Lemma 20.11.4. Let $X$ be a ringed space. Consider the functor $i : \textit{Mod}(\mathcal{O}_ X) \to \textit{PMod}(\mathcal{O}_ X)$. It is a left exact functor with right derived functors given by
see discussion in Section 20.7.
Lemma 20.11.4. Let $X$ be a ringed space. Consider the functor $i : \textit{Mod}(\mathcal{O}_ X) \to \textit{PMod}(\mathcal{O}_ X)$. It is a left exact functor with right derived functors given by
see discussion in Section 20.7.
Proof. It is clear that $i$ is left exact. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet $. By definition $R^ pi$ is the $p$th cohomology presheaf of the complex $\mathcal{I}^\bullet $. In other words, the sections of $R^ pi(\mathcal{F})$ over an open $U$ are given by
which is the definition of $H^ p(U, \mathcal{F})$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7790 by Jakob Werner on
Comment #8028 by Stacks Project on