The Stacks project

Lemma 17.22.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}$, $\mathcal{G}$ be $\mathcal{O}_ X$-modules.

  1. If $\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0$ is an exact sequence of $\mathcal{O}_ X$-modules, then

    \[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}_1, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}_2, \mathcal{G}) \]

    is exact.

  2. If $0 \to \mathcal{G} \to \mathcal{G}_1 \to \mathcal{G}_2$ is an exact sequence of $\mathcal{O}_ X$-modules, then

    \[ 0 \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}_1) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}_2) \]

    is exact.

Proof. Let $\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0$ be as in (1). For every $U \subset X$ open the sequence

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}|_ U, \mathcal{G}|_ U) \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}_1|_ U, \mathcal{G}|_ U) \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ U}(\mathcal{F}_2|_ U, \mathcal{G}|_ U) \]

is exact by Homology, Lemma 12.5.8. This means that taking sections over $U$ of the sequence of sheaves in (1) produces an exact sequence of abelian groups. Hence the sequence in (1) is exact by definition. The proof of (2) is exactly the same. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 17.22: Internal Hom

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01CO. Beware of the difference between the letter 'O' and the digit '0'.