Lemma 14.2.2. Any morphism in $\Delta $ can be written as a composition of the morphisms $\delta ^ n_ j$ and $\sigma ^ n_ j$.
Proof. Let $\varphi : [n] \to [m]$ be a morphism of $\Delta $. If $j \not\in \mathop{\mathrm{Im}}(\varphi )$, then we can write $\varphi $ as $\delta ^ m_ j \circ \psi $ for some morphism $\psi : [n] \to [m - 1]$. If $\varphi (j) = \varphi (j + 1)$ then we can write $\varphi $ as $\psi \circ \sigma ^{n - 1}_ j$ for some morphism $\psi : [n - 1] \to [m]$. The result follows because each replacement as above lowers $n + m$ and hence at some point $\varphi $ is both injective and surjective, hence an identity morphism. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: