Definition 13.21.1. Let $\mathcal{A}$ be an abelian category. Let $K^\bullet $ be a bounded below complex. A Cartan-Eilenberg resolution of $K^\bullet $ is given by a double complex $I^{\bullet , \bullet }$ and a morphism of complexes $\epsilon : K^\bullet \to I^{\bullet , 0}$ with the following properties:
There exists a $i \ll 0$ such that $I^{p, q} = 0$ for all $p < i$ and all $q$.
We have $I^{p, q} = 0$ if $q < 0$.
The complex $I^{p, \bullet }$ is an injective resolution of $K^ p$.
The complex $\mathop{\mathrm{Ker}}(d_1^{p, \bullet })$ is an injective resolution of $\mathop{\mathrm{Ker}}(d_ K^ p)$.
The complex $\mathop{\mathrm{Im}}(d_1^{p, \bullet })$ is an injective resolution of $\mathop{\mathrm{Im}}(d_ K^ p)$.
The complex $H^ p_ I(I^{\bullet , \bullet })$ is an injective resolution of $H^ p(K^\bullet )$.
Comments (0)