Definition 13.3.1. Let $\mathcal{D}$ be an additive category. Let $[1] : \mathcal{D} \to \mathcal{D}$, $E \mapsto E[1]$ be an additive functor which is an auto-equivalence of $\mathcal{D}$.
A triangle is a sextuple $(X, Y, Z, f, g, h)$ where $X, Y, Z \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ and $f : X \to Y$, $g : Y \to Z$ and $h : Z \to X[1]$ are morphisms of $\mathcal{D}$.
A morphism of triangles $(X, Y, Z, f, g, h) \to (X', Y', Z', f', g', h')$ is given by morphisms $a : X \to X'$, $b : Y \to Y'$ and $c : Z \to Z'$ of $\mathcal{D}$ such that $b \circ f = f' \circ a$, $c \circ g = g' \circ b$ and $a[1] \circ h = h' \circ c$.
Comments (4)
Comment #1392 by sdf on
Comment #1409 by Johan on
Comment #4327 by Christian Q. on
Comment #4483 by Johan on
There are also: