The Stacks project

Lemma 12.24.6. Let $\mathcal{A}$ be an abelian category. Let $(K^\bullet , F)$ be a filtered complex of $\mathcal{A}$. If $Z_\infty ^{p, q}$ and $B_\infty ^{p, q}$ exist (see proof), then

  1. the limit $E_\infty $ exists and is a bigraded object having $E_\infty ^{p, q} = Z_\infty ^{p, q}/B_\infty ^{p, q}$ in bidegree $(p, q)$,

  2. the $p$th graded part $\text{gr}^ pH^ n(K^\bullet )$ of the $n$th cohomology object of $K^\bullet $ is a subquotient of $E_\infty ^{p, n - p}$.

Proof. The objects $Z_\infty $, $B_\infty $, and the limit $E_\infty = Z_\infty /B_\infty $ of Definition 12.20.2 are bigraded objects of $\mathcal{A}$ by our construction of the spectral sequence in Lemma 12.24.2. Since $Z_ r = \bigoplus Z_ r^{p, q}$ and $B_ r = \bigoplus B_ r^{p, q}$, if we assume that

\[ Z_\infty ^{p, q} = \bigcap \nolimits _ r Z_ r^{p, q} = \bigcap \nolimits _ r \frac{F^ pK^{p + q} \cap d^{-1}(F^{p + r}K^{p + q + 1}) + F^{p + 1}K^{p + q}}{F^{p + 1}K^{p + q}} \]

and

\[ B_\infty ^{p, q} = \bigcup \nolimits _ r B_ r^{p, q} = \bigcup \nolimits _ r \frac{F^ pK^{p + q} \cap d(F^{p - r + 1}K^{p + q - 1}) + F^{p + 1}K^{p + q}}{F^{p + 1}K^{p + q}} \]

exist, then $Z_\infty $ and $B_\infty $ exist with bidegree $(p, q)$ parts $Z_\infty ^{p, q}$ and $B_\infty ^{p, q}$ (follows from an elementary argument about unions and intersections of bigraded objects). Thus

\[ E_\infty ^{p, q} = \frac{\bigcap _ r (F^ pK^{p + q} \cap d^{-1}(F^{p + r}K^{p + q + 1}) + F^{p + 1}K^{p + q})}{\bigcup _ r (F^ pK^{p + q} \cap d(F^{p - r + 1}K^{p + q - 1}) + F^{p + 1}K^{p + q})}. \]

where the top and the bottom exist. With $n = p + q$ we have

12.24.6.1
\begin{equation} \label{homology-equation-on-top-bigraded} \mathop{\mathrm{Ker}}(d) \cap F^ pK^{n} + F^{p + 1}K^{n} \subset \bigcap \nolimits _ r \left( F^ pK^{n} \cap d^{-1}(F^{p + r}K^{n + 1}) + F^{p + 1}K^{n} \right) \end{equation}

and

12.24.6.2
\begin{equation} \label{homology-equation-at-bottom-bigraded} \bigcup \nolimits _ r \left( F^ pK^{n} \cap d(F^{p - r + 1}K^{n - 1}) + F^{p + 1}K^{n} \right) \subset \mathop{\mathrm{Im}}(d) \cap F^ pK^{n} + F^{p + 1}K^{n}. \end{equation}

Thus a subquotient of $E_\infty ^{p, q}$ is

\[ \frac{\mathop{\mathrm{Ker}}(d) \cap F^ pK^{n} + F^{p + 1}K^ n}{\mathop{\mathrm{Im}}(d) \cap F^ pK^{n} + F^{p + 1}K^{n}} = \frac{\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n}{\mathop{\mathrm{Im}}(d) \cap F^ pK^ n + \mathop{\mathrm{Ker}}(d) \cap F^{p + 1}K^ n} \]

Comparing with (12.24.5.2) we conclude. $\square$


Comments (1)

Comment #9488 by on

Analogously as in Comment #9487:

  1. In the statement, instead of “the limit exists” shouldn't we specify “the limit of the spectral sequence of Lemma 12.24.2 exists”?
  2. In the proof, second sentence, instead of , , shouldn't one write , ? (We are working over an abelian category that might not satisfy AB3.)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 012Q. Beware of the difference between the letter 'O' and the digit '0'.