The Stacks project

Lemma 12.5.17. Let $\mathcal{A}$ be an abelian category. Let

\[ \xymatrix{ & x \ar[r]^ f \ar[d]^\alpha & y \ar[r]^ g \ar[d]^\beta & z \ar[r] \ar[d]^\gamma & 0 \\ 0 \ar[r] & u \ar[r]^ k & v \ar[r]^ l & w } \]

be a commutative diagram with exact rows.

  1. There exists a unique morphism $\delta : \mathop{\mathrm{Ker}}(\gamma ) \to \mathop{\mathrm{Coker}}(\alpha )$ such that the diagram

    \[ \xymatrix{ y \ar[d]_\beta & y \times _ z \mathop{\mathrm{Ker}}(\gamma ) \ar[l]_{\pi '} \ar[r]^{\pi } & \mathop{\mathrm{Ker}}(\gamma ) \ar[d]^\delta \\ v \ar[r]^{\iota '} & \mathop{\mathrm{Coker}}(\alpha ) \amalg _ u v & \mathop{\mathrm{Coker}}(\alpha ) \ar[l]_\iota } \]

    commutes, where $\pi $ and $\pi '$ are the canonical projections and $\iota $ and $\iota '$ are the canonical coprojections.

  2. The induced sequence

    \[ \mathop{\mathrm{Ker}}(\alpha ) \xrightarrow {f'} \mathop{\mathrm{Ker}}(\beta ) \xrightarrow {g'} \mathop{\mathrm{Ker}}(\gamma ) \xrightarrow {\delta } \mathop{\mathrm{Coker}}(\alpha ) \xrightarrow {k'} \mathop{\mathrm{Coker}}(\beta ) \xrightarrow {l'} \mathop{\mathrm{Coker}}(\gamma ) \]

    is exact. If $f$ is injective then so is $f'$, and if $l$ is surjective then so is $l'$.

Proof. As $\pi $ is an epimorphism and $\iota $ is a monomorphism by Lemma 12.5.13, uniqueness of $\delta $ is clear. Let $p = y \times _ z \mathop{\mathrm{Ker}}(\gamma )$ and $q = \mathop{\mathrm{Coker}}(\alpha ) \amalg _ u v$. Let $h : \mathop{\mathrm{Ker}}(\beta ) \to y$, $i : \mathop{\mathrm{Ker}}(\gamma ) \to z$ and $j : \mathop{\mathrm{Ker}}(\pi ) \to p$ be the canonical injections. Let $\pi '' : u \to \mathop{\mathrm{Coker}}(\alpha )$ be the canonical projection. Keeping in mind Lemma 12.5.13 we get a commutative diagram with exact rows

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{Ker}}(\pi ) \ar[r]^ j & p \ar[r]^{\pi } \ar[d]_{\pi '} & \mathop{\mathrm{Ker}}(\gamma ) \ar[d]_ i \ar[r] & 0 \\ & x \ar[r]^ f \ar[d]_\alpha & y \ar[r]^ g \ar[d]_\beta & z \ar[d]_\gamma \ar[r] & 0 \\ 0 \ar[r] & u \ar[r]^ k \ar[d]_{\pi ''} & v \ar[r]^ l \ar[d]_{\iota '} & w & \\ 0 \ar[r] & \mathop{\mathrm{Coker}}(\alpha ) \ar[r]^\iota & q & & } \]

As $l \circ \beta \circ \pi ' = \gamma \circ i \circ \pi = 0$ and as the third row of the diagram above is exact, there is an $a : p \to u$ with $k \circ a = \beta \circ \pi '$. As the upper right quadrangle of the diagram above is cartesian, Lemma 12.5.12 yields an epimorphism $b : x \to \mathop{\mathrm{Ker}}(\pi )$ with $\pi ' \circ j \circ b = f$. It follows $k \circ a \circ j \circ b = \beta \circ \pi ' \circ j \circ b = \beta \circ f = k \circ \alpha $. As $k$ is a monomorphism this implies $a \circ j \circ b = \alpha $. It follows $\pi '' \circ a \circ j \circ b = \pi '' \circ \alpha = 0$. As $b$ is an epimorphism this implies $\pi '' \circ a \circ j = 0$. Therefore, as the top row of the diagram above is exact, there exists $\delta : \mathop{\mathrm{Ker}}(\gamma ) \to \mathop{\mathrm{Coker}}(\alpha )$ with $\delta \circ \pi = \pi '' \circ a$. It follows $\iota \circ \delta \circ \pi = \iota \circ \pi '' \circ a = \iota ' \circ k \circ a = \iota ' \circ \beta \circ \pi '$ as desired.

As the upper right quadrangle in the diagram above is cartesian there is a $c : \mathop{\mathrm{Ker}}(\beta ) \to p$ with $\pi ' \circ c = h$ and $\pi \circ c = g'$. It follows $\iota \circ \delta \circ g' = \iota \circ \delta \circ \pi \circ c = \iota ' \circ \beta \circ \pi ' \circ c = \iota ' \circ \beta \circ h = 0$. As $\iota $ is a monomorphism this implies $\delta \circ g' = 0$.

Next, let $d : r \to \mathop{\mathrm{Ker}}(\gamma )$ with $\delta \circ d = 0$. Applying Lemma 12.5.15 to the exact sequence $p \xrightarrow {\pi } \mathop{\mathrm{Ker}}(\gamma ) \to 0$ and $d$ yields an object $s$, an epimorphism $m : s \to r$ and a morphism $n : s \to p$ with $\pi \circ n = d \circ m$. As $\pi '' \circ a \circ n = \delta \circ d \circ m = 0$, applying Lemma 12.5.15 to the exact sequence $x \xrightarrow {\alpha } u \xrightarrow {p} \mathop{\mathrm{Coker}}(\alpha )$ and $a \circ n$ yields an object $t$, an epimorphism $\varepsilon : t \to s$ and a morphism $\zeta : t \to x$ with $a \circ n \circ \varepsilon = \alpha \circ \zeta $. It holds $\beta \circ \pi ' \circ n \circ \varepsilon = k \circ \alpha \circ \zeta = \beta \circ f \circ \zeta $. Let $\eta = \pi ' \circ n \circ \varepsilon - f \circ \zeta : t \to y$. Then, $\beta \circ \eta = 0$. It follows that there is a $\vartheta : t \to \mathop{\mathrm{Ker}}(\beta )$ with $\eta = h \circ \vartheta $. It holds $i \circ g' \circ \vartheta = g \circ h \circ \vartheta = g \circ \pi ' \circ n \circ \varepsilon - g \circ f \circ \zeta = i \circ \pi \circ n \circ \varepsilon = i \circ d \circ m \circ \varepsilon $. As $i$ is a monomorphism we get $g' \circ \vartheta = d \circ m \circ \varepsilon $. Thus, as $m \circ \varepsilon $ is an epimorphism, Lemma 12.5.15 implies that $\mathop{\mathrm{Ker}}(\beta ) \xrightarrow {g'} \mathop{\mathrm{Ker}}(\gamma ) \xrightarrow {\delta } \mathop{\mathrm{Coker}}(\alpha )$ is exact. Then, the claim follows by Lemma 12.5.16 and duality. $\square$


Comments (2)

Comment #162 by on

I get a "parse error" in the second and the third diagram (and also in the second diagram in 08N7).

Comment #163 by on

This should be fixed now by this change. Let me know if it isn't.

There are also:

  • 9 comment(s) on Section 12.5: Abelian categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 010H. Beware of the difference between the letter 'O' and the digit '0'.