The Stacks project

Lemma 7.50.3. Assumption and notation as in Theorem 7.50.2. Then $J \subset J'$ if and only if every sheaf for the topology $J'$ is a sheaf for the topology $J$.

Proof. One direction is clear. For the other direction suppose that $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, J') \subset \mathop{\mathit{Sh}}\nolimits (\mathcal{C}, J)$. By formal nonsense this implies that if $\mathcal{F}$ is a presheaf of sets, and $\mathcal{F} \to \mathcal{F}^\# $, resp. $\mathcal{F} \to \mathcal{F}^{\# , \prime }$ is the sheafification wrt $J$, resp. $J'$ then there is a canonical map $\mathcal{F}^\# \to \mathcal{F}^{\# , \prime }$ such that $\mathcal{F} \to \mathcal{F}^\# \to \mathcal{F}^{\# , \prime }$ equals the canonical map $\mathcal{F} \to \mathcal{F}^{\# , \prime }$. Of course, $\mathcal{F}^\# \to \mathcal{F}^{\# , \prime }$ identifies the second sheaf as the sheafification of the first with respect to the topology $J'$. Apply this to the map $S \to h_ U$ of Lemma 7.50.1. We get a commutative diagram

\[ \xymatrix{ S \ar[r] \ar[d] & S^\# \ar[r] \ar[d] & S^{\# , \prime } \ar[d] \\ h_ U \ar[r] & h_ U^\# \ar[r] & h_ U^{\# , \prime } } \]

And clearly, if $S$ is a covering sieve for the topology $J$ then the middle vertical map is an isomorphism (by the lemma) and we conclude that the right vertical map is an isomorphism as it is the sheafification of the one in the middle wrt $J'$. By the lemma again we conclude that $S$ is a covering sieve for $J'$ as well. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 7.50: Topologies and sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00ZQ. Beware of the difference between the letter 'O' and the digit '0'.