Lemma 7.49.1. In the situation above.
The assignment $U \mapsto L\mathcal{F}(U)$ combined with the restriction mappings defined above is a presheaf.
The maps $\ell $ glue to give a morphism of presheaves $\ell : \mathcal{F} \to L\mathcal{F}$.
The rule $\mathcal{F} \mapsto (\mathcal{F} \xrightarrow {\ell } L\mathcal{F})$ is a functor.
If $\mathcal{F}$ is a subpresheaf of $\mathcal{G}$, then $L\mathcal{F}$ is a subpresheaf of $L\mathcal{G}$.
The map $\ell : \mathcal{F} \to L\mathcal{F}$ has the following property: For every section $s \in L\mathcal{F}(U)$ there exists a covering sieve $S$ on $U$ and an element $\varphi \in \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(S, \mathcal{F})$ such that $\ell (\varphi )$ equals the restriction of $s$ to $S$.
Comments (0)
There are also: