Lemma 7.47.7. Let $\mathcal{C}$ be a category. Let $J$ be a topology on $\mathcal{C}$. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.
Finite intersections of elements of $J(U)$ are in $J(U)$.
If $S \in J(U)$ and $S' \supset S$, then $S' \in J(U)$.
Comments (0)