The Stacks project

Definition 7.32.2. Let $\mathcal{C}$ be a site. A point $p$ of the site $\mathcal{C}$ is given by a functor $u : \mathcal{C} \to \textit{Sets}$ such that

  1. For every covering $\{ U_ i \to U\} $ of $\mathcal{C}$ the map $\coprod u(U_ i) \to u(U)$ is surjective.

  2. For every covering $\{ U_ i \to U\} $ of $\mathcal{C}$ and every morphism $V \to U$ the maps $u(U_ i \times _ U V) \to u(U_ i) \times _{u(U)} u(V)$ are bijective.

  3. The stalk functor $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \textit{Sets}$, $\mathcal{F} \mapsto \mathcal{F}_ p$ is left exact.


Comments (2)

Comment #2344 by Katharina on

Why does the stalk functor only have to be left exact and not exact?

Comment #2413 by on

OK, yes we could change the definition and say this, but I wanted to write down minimal conditions. The discussion following the definition shows that indeed the stalk functor is exact (as it defines a point of the topos).

There are also:

  • 2 comment(s) on Section 7.32: Points

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00Y5. Beware of the difference between the letter 'O' and the digit '0'.