Proposition 7.9.1. The functors $\mathcal{F} \mapsto \mathcal{F}({}_ GG)$ and $S \mapsto \mathcal{F}_ S$ define quasi-inverse equivalences between $\mathop{\mathit{Sh}}\nolimits (\mathcal{T}_ G)$ and $G\textit{-Sets}$.
Proof. We have already seen that composing the functors one way around is isomorphic to the identity functor. In the other direction, for any sheaf $\mathcal{H}$ there is a natural map of sheaves
Namely, for any object $U$ of $\mathcal{T}_ G$ we let $can_ U$ be the map
Here $\alpha _ u : {}_ GG \to U$ is the map $\alpha _ u(g) = gu$ and $\alpha _ u^* : \mathcal{H}(U) \to \mathcal{H}({}_ GG)$ is the pullback map. A trivial but confusing verification shows that this is indeed a map of presheaves. We have to show that $can$ is an isomorphism. We do this by showing $can_ U$ is an isomorphism for all $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{T}_ G)$. We leave the (important but easy) case that $U = {}_ GG$ to the reader. A general object $U$ of $\mathcal{T}_ G$ is a disjoint union of $G$-orbits: $U = \coprod _{i\in I} O_ i$. The family of maps $\{ O_ i \to U\} _{i \in I}$ is tautologically equivalent to a covering in $\mathcal{T}_ G$ (by the properties of $\mathcal{T}_ G$ listed at the beginning of this section). Hence by Lemma 7.8.4 the sheaf $\mathcal{H}$ satisfies the sheaf property with respect to $\{ O_ i \to U\} _{i \in I}$. The sheaf property for this covering implies $\mathcal{H}(U) = \prod _ i \mathcal{H}(O_ i)$. Hence it suffices to show that $can_ U$ is an isomorphism when $U$ consists of a single $G$-orbit. Let $u \in U$ and let $H \subset G$ be its stabilizer. Clearly, $\mathop{\mathrm{Mor}}\nolimits _ G(U, \mathcal{H}({}_ GG)) = \mathcal{H}({}_ GG)^ H$ equals the subset of $H$-invariant elements. On the other hand consider the covering $\{ {}_ GG \to U\} $ given by $g \mapsto gu$ (again it is just combinatorially equivalent to some covering of $\mathcal{T}_ G$, and again this doesn't matter). Note that the fibre product $({}_ GG)\times _ U ({}_ GG)$ is equal to $\{ (g, gh), g\in G, h\in H\} \cong \coprod _{h\in H} {}_ GG$. Hence the sheaf property for this covering reads as
The two maps $\text{pr}_ i^*$ into the factor $\mathcal{H}({}_ GG)$ differ by multiplication by $h$. Now the result follows from this and the fact that $can$ is an isomorphism for $U = {}_ GG$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #1848 by B on
Comment #1887 by Johan on