Lemma 115.4.3. Let $R \to S$ be a ring map. Let $\mathfrak p \subset R$ be a prime. Let $\mathfrak q \subset S$ be a prime lying over $\mathfrak p$. Assume $S_{\mathfrak q}$ is essentially of finite type over $R_\mathfrak p$. Assume given
an integer $n \geq 0$,
a prime $\mathfrak a \subset \kappa (\mathfrak p)[x_1, \ldots , x_ n]$,
a surjective $\kappa (\mathfrak p)$-homomorphism
\[ \psi : (\kappa (\mathfrak p)[x_1, \ldots , x_ n])_{\mathfrak a} \longrightarrow S_{\mathfrak q}/\mathfrak p S_{\mathfrak q}, \]and
elements $\overline{f}_1, \ldots , \overline{f}_ e$ in $\mathop{\mathrm{Ker}}(\psi )$.
Then there exist
an integer $m \geq 0$,
and element $g \in S$, $g \not\in \mathfrak q$,
a map
\[ \Psi : R[x_1, \ldots , x_ n, x_{n + 1}, \ldots , x_{n + m}] \longrightarrow S_ g, \]and
elements $f_1, \ldots , f_ e, f_{e + 1}, \ldots , f_{e + m}$ of $\mathop{\mathrm{Ker}}(\Psi )$
such that
the following diagram commutes
\[ \xymatrix{ R[x_1, \ldots , x_{n + m}] \ar[d]_\Psi \ar[rr]_-{x_{n + j} \mapsto 0} & & (\kappa (\mathfrak p)[x_1, \ldots , x_ n])_{\mathfrak a} \ar[d]^\psi \\ S_ g \ar[rr] & & S_{\mathfrak q}/\mathfrak p S_{\mathfrak q} }, \]the element $f_ i$, $i \leq n$ maps to a unit times $\overline{f}_ i$ in the local ring
\[ (\kappa (\mathfrak p)[x_1, \ldots , x_{n + m}])_{ (\mathfrak a, x_{n + 1}, \ldots , x_{n + m})}, \]the element $f_{e + j}$ maps to a unit times $x_{n + j}$ in the same local ring, and
the induced map $R[x_1, \ldots , x_{n + m}]_{\mathfrak b} \to S_{\mathfrak q}$ is surjective, where $\mathfrak b = \Psi ^{-1}(\mathfrak qS_ g)$.
Comments (0)