Lemma 6.20.2. With $X$, $\mathcal{O}_1$, $\mathcal{O}_2$, $\mathcal{F}$ and $\mathcal{G}$ as above there exists a canonical bijection
In other words, the restriction and change of rings functors are adjoint to each other.
Lemma 6.20.2. With $X$, $\mathcal{O}_1$, $\mathcal{O}_2$, $\mathcal{F}$ and $\mathcal{G}$ as above there exists a canonical bijection
In other words, the restriction and change of rings functors are adjoint to each other.
Proof. This follows from Lemma 6.6.2 and the fact that $\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{\mathcal{O}_1} \mathcal{G}, \mathcal{F} ) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_2}( \mathcal{O}_2 \otimes _{p, \mathcal{O}_1} \mathcal{G}, \mathcal{F} )$ because $\mathcal{F}$ is a sheaf. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)