Lemma 6.17.3. Let $\mathcal{F}$ be a presheaf of sets on $X$. Any map $\mathcal{F} \to \mathcal{G}$ into a sheaf of sets factors uniquely as $\mathcal{F} \to \mathcal{F}^\# \to \mathcal{G}$.
Proof. Clearly, there is a commutative diagram
\[ \xymatrix{ \mathcal{F} \ar[r] \ar[d] & \mathcal{F}^\# \ar[r] \ar[d] & \Pi (\mathcal{F}) \ar[d] \\ \mathcal{G} \ar[r] & \mathcal{G}^\# \ar[r] & \Pi (\mathcal{G}) \\ } \]
So it suffices to prove that $\mathcal{G} = \mathcal{G}^\# $. To see this it suffices to prove, for every point $x \in X$ the map $\mathcal{G}_ x \to \mathcal{G}^\# _ x$ is bijective, by Lemma 6.16.1. And this is Lemma 6.17.2 above. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: