Lemma 6.14.1. Let $X$ be a topological space. Let $\mathcal{O}$ be a presheaf of rings on $X$. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}$-modules. Let $x \in X$. The canonical map $\mathcal{O}_ x \times \mathcal{F}_ x \to \mathcal{F}_ x$ coming from the multiplication map $\mathcal{O} \times \mathcal{F} \to \mathcal{F}$ defines a $\mathcal{O}_ x$-module structure on the abelian group $\mathcal{F}_ x$.
6.14 Stalks of presheaves of modules
Proof. Omitted. $\square$
Lemma 6.14.2. Let $X$ be a topological space. Let $\mathcal{O} \to \mathcal{O}'$ be a morphism of presheaves of rings on $X$. Let $\mathcal{F}$ be a presheaf of $\mathcal{O}$-modules. Let $x \in X$. We have as $\mathcal{O}'_ x$-modules.
Proof. Omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)