Example 6.11.3. Let $X$ be a topological space. Let $A$ be a set. Denote temporarily $A_ p$ the constant presheaf with value $A$ ($p$ for presheaf – not for point). There is a canonical map of presheaves $A_ p \to \underline{A}$ into the constant sheaf with value $A$. For every point we have canonical bijections $A = (A_ p)_ x = \underline{A}_ x$, where the second map is induced by functoriality from the map $A_ p \to \underline{A}$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: