The Stacks project

Definition 4.21.2. Let $(I, \leq )$ be a preordered set. Let $\mathcal{C}$ be a category.

  1. A system over $I$ in $\mathcal{C}$, sometimes called a inductive system over $I$ in $\mathcal{C}$ is given by objects $M_ i$ of $\mathcal{C}$ and for every $i \leq i'$ a morphism $f_{ii'} : M_ i \to M_{i'}$ such that $f_{ii} = \text{id}$ and such that $f_{ii''} = f_{i'i''} \circ f_{i i'}$ whenever $i \leq i' \leq i''$.

  2. An inverse system over $I$ in $\mathcal{C}$, sometimes called a projective system over $I$ in $\mathcal{C}$ is given by objects $M_ i$ of $\mathcal{C}$ and for every $i' \leq i$ a morphism $f_{ii'} : M_ i \to M_{i'}$ such that $f_{ii} = \text{id}$ and such that $f_{ii''} = f_{i'i''} \circ f_{i i'}$ whenever $i'' \leq i' \leq i$. (Note reversal of inequalities.)

We will say $(M_ i, f_{ii'})$ is a (inverse) system over $I$ to denote this. The maps $f_{ii'}$ are sometimes called the transition maps.


Comments (0)

There are also:

  • 2 comment(s) on Section 4.21: Limits and colimits over preordered sets

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0030. Beware of the difference between the letter 'O' and the digit '0'.