Lemma 4.14.10. Let $\mathcal{I}$, $\mathcal{J}$ be index categories. Let $M : \mathcal{I} \times \mathcal{J} \to \mathcal{C}$ be a functor. Assume that $M_{i, \infty } = \mathop{\mathrm{colim}}\nolimits _ j M_{i,j}$ exists for all $i$. Then the resulting functor $M_{-, \infty } : \mathcal{I} \to \mathcal{C}$ has a colimit if and only if $M$ does, and then the colimits coincide. In particular, we have
provided all the indicated colimits exist. Similar for limits.
Comments (3)
Comment #8886 by Laurent Moret-Bailly on
Comment #8986 by Laurent Moret-Bailly on
Comment #9200 by Stacks project on
There are also: