4.6 Fibre products
Definition 4.6.1. Let $x, y, z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$, $f\in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(x, y)$ and $g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(z, y)$. A fibre product of $f$ and $g$ is an object $x \times _ y z\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ together with morphisms $p \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, x)$ and $q \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x \times _ y z, z)$ making the diagram
\[ \xymatrix{ x \times _ y z \ar[r]_ q \ar[d]_ p & z \ar[d]^ g \\ x \ar[r]^ f & y } \]
commute, and such that the following universal property holds: for any $w\in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and morphisms $\alpha \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x)$ and $\beta \in \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(w, z)$ with $f \circ \alpha = g \circ \beta $ there is a unique $\gamma \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(w, x \times _ y z)$ making the diagram
\[ \xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\gamma \ar[rrdd]_\alpha & & \\ & & x \times _ y z \ar[d]^ p \ar[r]_ q & z \ar[d]^ g \\ & & x \ar[r]^ f & y } \]
commute.
If a fibre product exists it is unique up to unique isomorphism. This follows from the Yoneda lemma as the definition requires $x \times _ y z$ to be an object of $\mathcal{C}$ such that
\[ h_{x \times _ y z}(w) = h_ x(w) \times _{h_ y(w)} h_ z(w) \]
functorially in $w$. In other words the fibre product $x \times _ y z$ is an object representing the functor $w \mapsto h_ x(w) \times _{h_ y(w)} h_ z(w)$.
Definition 4.6.2. We say a commutative diagram
\[ \xymatrix{ w \ar[r] \ar[d] & z \ar[d] \\ x \ar[r] & y } \]
in a category is cartesian if $w$ and the morphisms $w \to x$ and $w \to z$ form a fibre product of the morphisms $x \to y$ and $z \to y$.
Definition 4.6.3. We say the category $\mathcal{C}$ has fibre products if the fibre product exists for any $f\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(x, y)$ and $g\in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(z, y)$.
Definition 4.6.4. A morphism $f : x \to y$ of a category $\mathcal{C}$ is said to be representable if for every morphism $z \to y$ in $\mathcal{C}$ the fibre product $x \times _ y z$ exists.
Lemma 4.6.5. Let $\mathcal{C}$ be a category. Let $f : x \to y$, and $g : y \to z$ be representable. Then $g \circ f : x \to z$ is representable.
Proof.
Let $t \in \mathop{\mathrm{Ob}}\nolimits (\mathcal C)$ and $ \varphi \in \mathop{\mathrm{Mor}}\nolimits _{\mathcal C}(t,z) $. As $g$ and $f$ are representable, we obtain commutative diagrams
\[ \xymatrix{ y \times _ z t \ar[r]_ q \ar[d]_ p & t \ar[d]^{\varphi } \\ y \ar[r]^{g} & z } \quad \quad \xymatrix{ x \times _ y (y\! \times _ z\! t) \ar[r]_{q'} \ar[d]_{p'} & y \times _ z t \ar[d]^ p \\ x \ar[r]^ f & y } \]
with the universal property of Definition 4.6.1. We claim that $x \times _ z t = x \times _ y (y \times _ z t)$ with morphisms $q \circ q' : x \times _ z t \to t$ and $p' : x \times _ z t \to x$ is a fibre product. First, it follows from the commutativity of the diagrams above that $\varphi \circ q \circ q' = f \circ g \circ p'$. To verify the universal property, let $w \in \mathop{\mathrm{Ob}}\nolimits (\mathcal C)$ and suppose $\alpha : w \to x$ and $\beta : w \to y$ are morphisms with $\varphi \circ \beta = f \circ g \circ \alpha $. By definition of the fibre product, there are unique morphisms $\delta $ and $\gamma $ such that
\[ \xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\delta \ar[rrdd]_{f\circ \alpha } & & \\ & & y \times _ z t \ar[d]_ p \ar[r]_ q & t \ar[d]^{\varphi } \\ & & y \ar[r]^{g} & z } \]
and
\[ \xymatrix{ w \ar[rrrd]^\delta \ar@{-->}[rrd]_\gamma \ar[rrdd]_{\alpha } & & \\ & & x \times _ y (y\! \times _ z\! t) \ar[d]_{p'} \ar[r]_{q'} & y \times _ z t \ar[d]^{p} \\ & & x \ar[r]^{f} & y } \]
commute. Then, $\gamma $ makes the diagram
\[ \xymatrix{ w \ar[rrrd]^\beta \ar@{-->}[rrd]_\gamma \ar[rrdd]_{\alpha } & & \\ & & x \times _ z t \ar[d]_{p'} \ar[r]_{q\circ q'} & t \ar[d]^{\varphi } \\ & & x \ar[r]^{g\circ f} & z } \]
commute. To show its uniqueness, let $\gamma '$ verify $ q\circ q'\circ \gamma ' = \beta $ and $ p'\circ \gamma ' = \alpha $. Because $\gamma $ is unique, we just need to prove that $ q'\circ \gamma ' = \delta $ and $ p'\circ \gamma ' = \alpha $ to conclude. We supposed the second equality. For the first one, we also need to use the uniqueness of delta. Notice that $\delta $ is the only morphism verifying $ q\circ \delta = \beta $ and $ p\circ \delta = f\circ \alpha $. We already supposed that $ q\circ (q'\circ \gamma ') = \beta $. Furthermore, by definition of the fibre product, we know that $ f\circ p' = p\circ q' $. Therefore:
\[ p\circ (q'\circ \gamma ') = (p\circ q')\circ \gamma ' = (f\circ p')\circ \gamma ' = f\circ (p'\circ \gamma ') = f\circ \alpha . \]
Then $ q'\circ \gamma ' = \delta $, which concludes the proof.
$\square$
Lemma 4.6.6. Let $\mathcal{C}$ be a category. Let $f : x \to y$ be representable. Let $y' \to y$ be a morphism of $\mathcal{C}$. Then the morphism $x' := x \times _ y y' \to y'$ is representable also.
Proof.
Let $z \to y'$ be a morphism. The fibre product $x' \times _{y'} z$ is supposed to represent the functor
\begin{eqnarray*} w & \mapsto & h_{x'}(w)\times _{h_{y'}(w)} h_ z(w) \\ & = & (h_ x(w) \times _{h_ y(w)} h_{y'}(w)) \times _{h_{y'}(w)} h_ z(w) \\ & = & h_ x(w) \times _{h_ y(w)} h_ z(w) \end{eqnarray*}
which is representable by assumption.
$\square$
Comments (4)
Comment #153 by Fred Rohrer on
Comment #157 by Johan on
Comment #3413 by Herman Rohrbach on
Comment #3472 by Johan on