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1. Introduction

0BQ7 In this chapter we discuss Grothendieck’s fundamental group of a scheme and ap-
plications. A foundational reference is [Gro71]. A nice introduction is [Len]. Other
references [Mur67] and [GM71].

2. Schemes étale over a point

04JI In this section we describe schemes étale over the spectrum of a field. Before we
state the result we introduce the category of G-sets for a topological group G.

Definition 2.1.04JJ Let G be a topological group. A G-set, sometimes called a
discrete G-set, is a set X endowed with a left action a : G×X → X such that a is
continuous when X is given the discrete topology and G×X the product topology.
A morphism of G-sets f : X → Y is simply any G-equivariant map from X to Y .
The category of G-sets is denoted G-Sets.

The condition that a : G×X → X is continuous signifies simply that the stabilizer
of any x ∈ X is open in G. If G is an abstract group G (i.e., a group but not a
topological group) then this agrees with our preceding definition (see for example
Sites, Example 6.5) provided we endow G with the discrete topology.

Recall that if L/K is an infinite Galois extension then the Galois group G =
Gal(L/K) comes endowed with a canonical topology, see Fields, Section 22.

Lemma 2.2.03QR Let K be a field. Let Ksep be a separable closure of K. Consider
the profinite group G = Gal(Ksep/K). The functor

schemes étale over K −→ G-Sets
X/K 7−→ MorSpec(K)(Spec(Ksep), X)

is an equivalence of categories.

Proof. A scheme X over K is étale over K if and only if X ∼=
∐
i∈I Spec(Ki) with

each Ki a finite separable extension of K (Morphisms, Lemma 36.7). The functor
of the lemma associates to X the G-set∐

i
HomK(Ki,K

sep)

with its natural left G-action. Each element has an open stabilizer by definition of
the topology on G. Conversely, any G-set S is a disjoint union of its orbits. Say
S =

∐
Si. Pick si ∈ Si and denote Gi ⊂ G its open stabilizer. By Galois theory

(Fields, Theorem 22.4) the fields (Ksep)Gi are finite separable field extensions of
K, and hence the scheme ∐

i
Spec((Ksep)Gi)

is étale over K. This gives an inverse to the functor of the lemma. Some details
omitted. □

Remark 2.3.03QS Under the correspondence of Lemma 2.2, the coverings in the small
étale site Spec(K)étale of K correspond to surjective families of maps in G-Sets.

https://stacks.math.columbia.edu/tag/04JJ
https://stacks.math.columbia.edu/tag/03QR
https://stacks.math.columbia.edu/tag/03QS
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3. Galois categories

0BMQ In this section we discuss some of the material the reader can find in [Gro71, Exposé
V, Sections 4, 5, and 6].
Let F : C → Sets be a functor. Recall that by our conventions categories have a
set of objects and for any pair of objects a set of morphisms. There is a canonical
injective map

(3.0.1)0BS7 Aut(F ) −→
∏

X∈Ob(C)
Aut(F (X))

For a set E we endow Aut(E) with the compact open topology, see Topology,
Example 30.2. Of course this is the discrete topology when E is finite, which is the
case of interest in this section1. We endow Aut(F ) with the topology induced from
the product topology on the right hand side of (3.0.1). In particular, the action
maps

Aut(F )× F (X) −→ F (X)
are continuous when F (X) is given the discrete topology because this is true for
the action maps Aut(E) × E → E for any set E. The universal property of our
topology on Aut(F ) is the following: suppose that G is a topological group and
G→ Aut(F ) is a group homomorphism such that the induced actions G×F (X)→
F (X) are continuous for all X ∈ Ob(C) where F (X) has the discrete topology.
Then G→ Aut(F ) is continuous.
The following lemma tells us that the group of automorphisms of a functor to the
category of finite sets is automatically a profinite group.

Lemma 3.1.0BMR Let C be a category and let F : C → Sets be a functor. The map
(3.0.1) identifies Aut(F ) with a closed subgroup of

∏
X∈Ob(C) Aut(F (X)). In par-

ticular, if F (X) is finite for all X, then Aut(F ) is a profinite group.

Proof. Let ξ = (γX) ∈
∏

Aut(F (X)) be an element not in Aut(F ). Then there ex-
ists a morphism f : X → X ′ of C and an element x ∈ F (X) such that F (f)(γX(x)) ̸=
γX′(F (f)(x)). Consider the open neighbourhood U = {γ ∈ Aut(F (X)) | γ(x) =
γX(x)} of γX and the open neighbourhood U ′ = {γ′ ∈ Aut(F (X ′)) | γ′(F (f)(x)) =
γX′(F (f)(x))}. Then U×U ′×

∏
X′′ ̸=X,X′ Aut(F (X ′′)) is an open neighbourhood of

ξ not meeting Aut(F ). The final statement follows from the fact that
∏

Aut(F (X))
is a profinite space if each F (X) is finite. □

Example 3.2.0BMS Let G be a topological group. An important example will be the
forgetful functor
(3.2.1)0BMT Finite-G-Sets −→ Sets
where Finite-G-Sets is the full subcategory of G-Sets whose objects are the finite
G-sets. The category G-Sets of G-sets is defined in Definition 2.1.

Let G be a topological group. The profinite completion of G will be the profinite
group

G∧ = limU⊂G open, normal, finite index G/U

with its profinite topology. Observe that the limit is cofiltered as a finite intersection
of open, normal subgroups of finite index is another. The universal property of the

1When we discuss the pro-étale fundamental group the general case will be of interest.

https://stacks.math.columbia.edu/tag/0BMR
https://stacks.math.columbia.edu/tag/0BMS
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profinite completion is that any continuous map G → H to a profinite group H
factors canonically as G→ G∧ → H.

Lemma 3.3.0BMU Let G be a topological group. The automorphism group of the functor
(3.2.1) endowed with its profinite topology from Lemma 3.1 is the profinite comple-
tion of G.

Proof. Denote FG the functor (3.2.1). Any morphism X → Y in Finite-G-Sets
commutes with the action of G. Thus any g ∈ G defines an automorphism of
FG and we obtain a canonical homomorphism G → Aut(FG) of groups. Observe
that any finite G-set X is a finite disjoint union of G-sets of the form G/Hi with
canonical G-action where Hi ⊂ G is an open subgroup of finite index. Then Ui =⋂
gHig

−1 is open, normal, and has finite index. Moreover Ui acts trivially on G/Hi

hence U =
⋂
Ui acts trivially on FG(X). Hence the action G × FG(X) → FG(X)

is continuous. By the universal property of the topology on Aut(FG) the map
G→ Aut(FG) is continuous. By Lemma 3.1 and the universal property of profinite
completion there is an induced continuous group homomorphism

G∧ −→ Aut(FG)

Moreover, since G/U acts faithfully on G/U this map is injective. If the image is
dense, then the map is surjective and hence a homeomorphism by Topology, Lemma
17.8.

Let γ ∈ Aut(FG) and let X ∈ Ob(C). We will show there is a g ∈ G such that γ
and g induce the same action on FG(X). This will finish the proof. As before we
see that X is a finite disjoint union of G/Hi. With Ui and U as above, the finite
G-set Y = G/U surjects onto G/Hi for all i and hence it suffices to find g ∈ G
such that γ and g induce the same action on FG(G/U) = G/U . Let e ∈ G be the
neutral element and say that γ(eU) = g0U for some g0 ∈ G. For any g1 ∈ G the
morphism

Rg1 : G/U −→ G/U, gU 7−→ gg1U

of Finite-G-Sets commutes with the action of γ. Hence

γ(g1U) = γ(Rg1(eU)) = Rg1(γ(eU)) = Rg1(g0U) = g0g1U

Thus we see that g = g0 works. □

Recall that an exact functor is one which commutes with all finite limits and finite
colimits. In particular such a functor commutes with equalizers, coequalizers, fibred
products, pushouts, etc.

Lemma 3.4.0BMV Let G be a topological group. Let F : Finite-G-Sets → Sets be an
exact functor with F (X) finite for all X. Then F is isomorphic to the functor
(3.2.1).

Proof. Let X be a nonempty object of Finite-G-Sets. The diagram

X //

��

{∗}

��
{∗} // {∗}

https://stacks.math.columbia.edu/tag/0BMU
https://stacks.math.columbia.edu/tag/0BMV


FUNDAMENTAL GROUPS OF SCHEMES 5

is cocartesian. Hence we conclude that F (X) is nonempty. Let U ⊂ G be an open,
normal subgroup with finite index. Observe that

G/U ×G/U =
∐

gU∈G/U
G/U

where the summand corresponding to gU corresponds to the orbit of (eU, gU) on
the left hand side. Then we see that

F (G/U)× F (G/U) = F (G/U ×G/U) =
∐

gU∈G/U
F (G/U)

Hence |F (G/U)| = |G/U | as F (G/U) is nonempty. Thus we see that
limU⊂G open, normal, finite idex F (G/U)

is nonempty (Categories, Lemma 21.7). Pick γ = (γU ) an element in this limit.
Denote FG the functor (3.2.1). We can identify FG with the functor

X 7−→ colimU Mor(G/U,X)
where f : G/U → X corresponds to f(eU) ∈ X = FG(X) (details omitted). Hence
the element γ determines a well defined map

t : FG −→ F

Namely, given x ∈ X choose U and f : G/U → X sending eU to x and then
set tX(x) = F (f)(γU ). We will show that t induces a bijective map tG/U :
FG(G/U) → F (G/U) for any U . This implies in a straightforward manner that
t is an isomorphism (details omitted). Since |FG(G/U)| = |F (G/U)| it suffices to
show that tG/U is surjective. The image contains at least one element, namely
tG/U (eU) = F (idG/U )(γU ) = γU . For g ∈ G denote Rg : G/U → G/U right
multiplication. Then set of fixed points of F (Rg) : F (G/U) → F (G/U) is equal
to F (∅) = ∅ if g ̸∈ U because F commutes with equalizers. It follows that if
g1, . . . , g|G/U | is a system of representatives for G/U , then the elements F (Rgi

)(γU )
are pairwise distinct and hence fill out F (G/U). Then

tG/U (giU) = F (Rgi
)(γU )

and the proof is complete. □

Example 3.5.0BMW Let C be a category and let F : C → Sets be a functor such that
F (X) is finite for all X ∈ Ob(C). By Lemma 3.1 we see that G = Aut(F ) comes
endowed with the structure of a profinite topological group in a canonical manner.
We obtain a functor
(3.5.1)0BMX C −→ Finite-G-Sets, X 7−→ F (X)
where F (X) is endowed with the induced action of G. This action is continuous by
our construction of the topology on Aut(F ).

The purpose of defining Galois categories is to single out those pairs (C, F ) for
which the functor (3.5.1) is an equivalence. Our definition of a Galois category is
as follows.

Definition 3.6.0BMY Different from the
definition in [Gro71,
Exposé V,
Definition 5.1].
Compare with
[BS13, Definition
7.2.1].

Let C be a category and let F : C → Sets be a functor. The pair
(C, F ) is a Galois category if

(1) C has finite limits and finite colimits,
(2)0BMZ every object of C is a finite (possibly empty) coproduct of connected objects,
(3) F (X) is finite for all X ∈ Ob(C), and

https://stacks.math.columbia.edu/tag/0BMW
https://stacks.math.columbia.edu/tag/0BMY
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(4) F reflects isomorphisms2 and is exact3.
Here we say X ∈ Ob(C) is connected if it is not initial and for any monomorphism
Y → X either Y is initial or Y → X is an isomorphism.

Warning: This definition is not the same (although eventually we’ll see it is equiv-
alent) as the definition given in most references. Namely, in [Gro71, Exposé V, Def-
inition 5.1] a Galois category is defined to be a category equivalent to Finite-G-Sets
for some profinite group G. Then Grothendieck characterizes Galois categories by
a list of axioms (G1) – (G6) which are weaker than our axioms above. The motiva-
tion for our choice is to stress the existence of finite limits and finite colimits and
exactness of the functor F . The price we’ll pay for this later is that we’ll have to
work a bit harder to apply the results of this section.

Lemma 3.7.0BN0 Let (C, F ) be a Galois category. Let X → Y ∈ Arrows(C). Then
(1) F is faithful,
(2) X → Y is a monomorphism ⇔ F (X)→ F (Y ) is injective,
(3) X → Y is an epimorphism ⇔ F (X)→ F (Y ) is surjective,
(4) an object A of C is initial if and only if F (A) = ∅,
(5) an object Z of C is final if and only if F (Z) is a singleton,
(6) if X and Y are connected, then X → Y is an epimorphism,
(7)0BN1 if X is connected and a, b : X → Y are two morphisms then a = b as soon

as F (a) and F (b) agree on one element of F (X),
(8) if X =

∐
i=1,...,nXi and Y =

∐
j=1,...,m Yj where Xi, Yj are connected, then

there is map α : {1, . . . , n} → {1, . . . ,m} such that X → Y comes from a
collection of morphisms Xi → Yα(i).

Proof. Proof of (1). Suppose a, b : X → Y with F (a) = F (b). Let E be the
equalizer of a and b. Then F (E) = F (X) and we see that E = X because F
reflects isomorphisms.
Proof of (2). This is true because F turns the morphism X → X ×Y X into the
map F (X)→ F (X)×F (Y ) F (X) and F reflects isomorphisms.
Proof of (3). This is true because F turns the morphism Y ⨿X Y → Y into the
map F (Y )⨿F (X) F (Y )→ F (Y ) and F reflects isomorphisms.
Proof of (4). There exists an initial object A and certainly F (A) = ∅. On the other
hand, if X is an object with F (X) = ∅, then the unique map A → X induces a
bijection F (A)→ F (X) and hence A→ X is an isomorphism.
Proof of (5). There exists a final object Z and certainly F (Z) is a singleton. On the
other hand, if X is an object with F (X) a singleton, then the unique map X → Z
induces a bijection F (X)→ F (Z) and hence X → Z is an isomorphism.
Proof of (6). The equalizer E of the two maps Y → Y ⨿X Y is not an initial object
of C because X → Y factors through E and F (X) ̸= ∅. Hence E = Y and we
conclude.
Proof of (7). The equalizer E of a and b comes with a monomorphism E → X and
F (E) ⊂ F (X) is the set of elements where F (a) and F (b) agree. To finish use that
either E is initial or E = X.

2Namely, given a morphism f of C if F (f) is an isomorphism, then f is an isomorphism.
3This means that F commutes with finite limits and colimits, see Categories, Section 23.

https://stacks.math.columbia.edu/tag/0BN0
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Proof of (8). For each i, j we see that Eij = Xi ×Y Yj is either initial or equal to
Xi. Picking s ∈ F (Xi) we see that Eij = Xi if and only if s maps to an element of
F (Yj) ⊂ F (Y ), hence this happens for a unique j = α(i). □

By the lemma above we see that, given a connected object X of a Galois category
(C, F ), the automorphism group Aut(X) has order at most |F (X)|. Namely, given
s ∈ F (X) and g ∈ Aut(X) we see that g(s) = s if and only if g = idX by (7). We
say X is Galois if equality holds. Equivalently, X is Galois if it is connected and
Aut(X) acts transitively on F (X).

Lemma 3.8.0BN2 Let (C, F ) be a Galois category. For any connected object X of C
there exists a Galois object Y and a morphism Y → X.

Proof. We will use the results of Lemma 3.7 without further mention. Let n =
|F (X)|. Consider Xn endowed with its natural action of Sn. Let

Xn =
∐

t∈T
Zt

be the decomposition into connected objects. Pick a t such that F (Zt) contains
(s1, . . . , sn) with si pairwise distinct. If (s′

1, . . . , s
′
n) ∈ F (Zt) is another element,

then we claim s′
i are pairwise distinct as well. Namely, if not, say s′

i = s′
j , then Zt

is the image of an connected component of Xn−1 under the diagonal morphism
∆ij : Xn−1 −→ Xn

Since morphisms of connected objects are epimorphisms and induce surjections
after applying F it would follow that si = sj which is not the case.
Let G ⊂ Sn be the subgroup of elements with g(Zt) = Zt. Looking at the action
of Sn on

F (X)n = F (Xn) =
∐

t′∈T
F (Zt′)

we see that G = {g ∈ Sn | g(s1, . . . , sn) ∈ F (Zt)}. Now pick a second element
(s′

1, . . . , s
′
n) ∈ F (Zt). Above we have seen that s′

i are pairwise distinct. Thus we
can find a g ∈ Sn with g(s1, . . . , sn) = (s′

1, . . . , s
′
n). In other words, the action of G

on F (Zt) is transitive and the proof is complete. □

Here is a key lemma.

Lemma 3.9.0BN3 Compare with
[BS13, Definition
7.2.4].

Let (C, F ) be a Galois category. Let G = Aut(F ) be as in Example
3.5. For any connected X in C the action of G on F (X) is transitive.

Proof. We will use the results of Lemma 3.7 without further mention. Let I be
the set of isomorphism classes of Galois objects in C. For each i ∈ I let Xi be a
representative of the isomorphism class. Choose γi ∈ F (Xi) for each i ∈ I. We
define a partial ordering on I by setting i ≥ i′ if and only if there is a morphism
fii′ : Xi → Xi′ . Given such a morphism we can post-compose by an automorphism
Xi′ → Xi′ to assure that F (fii′)(γi) = γi′ . With this normalization the morphism
fii′ is unique. Observe that I is a directed partially ordered set: (Categories,
Definition 21.1) if i1, i2 ∈ I there exists a Galois object Y and a morphism Y →
Xi1 × Xi2 by Lemma 3.8 applied to a connected component of Xi1 × Xi2 . Then
Y ∼= Xi for some i ∈ I and i ≥ i1, i ≥ I2.
We claim that the functor F is isomorphic to the functor F ′ which sends X to

F ′(X) = colimI MorC(Xi, X)

https://stacks.math.columbia.edu/tag/0BN2
https://stacks.math.columbia.edu/tag/0BN3
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via the transformation of functors t : F ′ → F defined as follows: given f : Xi → X
we set tX(f) = F (f)(γi). Using (7) we find that tX is injective. To show surjectivity,
let γ ∈ F (X). Then we can immediately reduce to the case where X is connected by
the definition of a Galois category. Then we may assume X is Galois by Lemma 3.8.
In this case X is isomorphic to Xi for some i and we can choose the isomorphism
Xi → X such that γi maps to γ (by definition of Galois objects). We conclude that
t is an isomorphism.

Set Ai = Aut(Xi). We claim that for i ≥ i′ there is a canonical map hii′ : Ai → Ai′

such that for all a ∈ Ai the diagram

Xi

a

��

fii′
// Xi′

hii′ (a)
��

Xi

fii′ // Xi′

commutes. Namely, just let hii′(a) = a′ : Xi′ → Xi′ be the unique automorphism
such that F (a′)(γi′) = F (fii′ ◦ a)(γi). As before this makes the diagram commute
and moreover the choice is unique. It follows that hi′i′′ ◦ hii′ = hii′′ if i ≥ i′ ≥ i′′.
Since F (Xi)→ F (Xi′) is surjective we see that Ai → Ai′ is surjective. Taking the
inverse limit we obtain a group

A = limI Ai

This is a profinite group since the automorphism groups are finite. The map A→ Ai
is surjective for all i by Categories, Lemma 21.7.

Since elements of A act on the inverse system Xi we get an action of A (on the
right) on F ′ by pre-composing. In other words, we get a homomorphism Aopp → G.
Since A→ Ai is surjective we conclude that G acts transitively on F (Xi) for all i.
Since every connected object is dominated by one of the Xi we conclude the lemma
is true. □

Proposition 3.10.0BN4 This is a weak
version of [Gro71,
Exposé V]. The
proof is borrowed
from [BS13,
Theorem 7.2.5].

Let (C, F ) be a Galois category. Let G = Aut(F ) be as in
Example 3.5. The functor F : C → Finite-G-Sets (3.5.1) an equivalence.

Proof. We will use the results of Lemma 3.7 without further mention. In particular
we know the functor is faithful. By Lemma 3.9 we know that for any connected X
the action of G on F (X) is transitive. Hence F preserves the decomposition into
connected components (existence of which is an axiom of a Galois category). Let
X and Y be objects and let s : F (X) → F (Y ) be a map. Then the graph Γs ⊂
F (X)× F (Y ) of s is a union of connected components. Hence there exists a union
of connected components Z of X×Y , which comes equipped with a monomorphism
Z → X × Y , with F (Z) = Γs. Since F (Z)→ F (X) is bijective we see that Z → X
is an isomorphism and we conclude that s = F (f) where f : X ∼= Z → Y is the
composition. Hence F is fully faithful.

To finish the proof we show that F is essentially surjective. It suffices to show that
G/H is in the essential image for any open subgroup H ⊂ G of finite index. By
definition of the topology on G there exists a finite collection of objects Xi such
that

Ker(G −→
∏

i
Aut(F (Xi)))

https://stacks.math.columbia.edu/tag/0BN4
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is contained in H. We may assume Xi is connected for all i. We can choose a Galois
object Y mapping to a connected component of

∏
Xi using Lemma 3.8. Choose

an isomorphism F (Y ) = G/U in G-sets for some open subgroup U ⊂ G. As Y
is Galois, the group Aut(Y ) = AutG-Sets(G/U) acts transitively on F (Y ) = G/U .
This implies that U is normal. Since F (Y ) surjects onto F (Xi) for each i we see
that U ⊂ H. Let M ⊂ Aut(Y ) be the finite subgroup corresponding to

(H/U)opp ⊂ (G/U)opp = AutG-Sets(G/U) = Aut(Y ).

Set X = Y/M , i.e., X is the coequalizer of the arrows m : Y → Y , m ∈ M . Since
F is exact we see that F (X) = G/H and the proof is complete. □

Lemma 3.11.0BN5 Let (C, F ) and (C′, F ′) be Galois categories. Let H : C → C′ be
an exact functor. There exists an isomorphism t : F ′ ◦ H → F . The choice of t
determines a continuous homomorphism h : G′ = Aut(F ′) → Aut(F ) = G and a
2-commutative diagram

C
H

//

��

C′

��
Finite-G-Sets h // Finite-G′-Sets

The map h is independent of t up to an inner automorphism of G. Conversely, given
a continuous homomorphism h : G′ → G there is an exact functor H : C → C′ and
an isomorphism t recovering h as above.

Proof. By Proposition 3.10 and Lemma 3.3 we may assume C = Finite-G-Sets and
F is the forgetful functor and similarly for C′. Thus the existence of t follows from
Lemma 3.4. The map h comes from transport of structure via t. The commutativity
of the diagram is obvious. Uniqueness of h up to inner conjugation by an element
of G comes from the fact that the choice of t is unique up to an element of G. The
final statement is straightforward. □

4. Functors and homomorphisms

0BTQ Let (C, F ), (C′, F ′), (C′′, F ′′) be Galois categories. Set G = Aut(F ), G′ = Aut(F ′),
and G′′ = Aut(F ′′). Let H : C → C′ and H ′ : C′ → C′′ be exact functors. Let
h : G′ → G and h′ : G′′ → G′ be the corresponding continuous homomorphism
as in Lemma 3.11. In this section we consider the corresponding 2-commutative
diagram

(4.0.1)0BTR

C
H

//

��

C′
H′

//

��

C′′

��
Finite-G-Sets h // Finite-G′-Sets h′

// Finite-G′′-Sets
and we relate exactness properties of the sequence 1 → G′′ → G′ → G → 1 to
properties of the functors H and H ′.

Lemma 4.1.0BN6 In diagram (4.0.1) the following are equivalent
(1) h : G′ → G is surjective,
(2) H : C → C′ is fully faithful,
(3) if X ∈ Ob(C) is connected, then H(X) is connected,

https://stacks.math.columbia.edu/tag/0BN5
https://stacks.math.columbia.edu/tag/0BN6
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(4) if X ∈ Ob(C) is connected and there is a morphism ∗′ → H(X) in C′, then
there is a morphism ∗ → X, and

(5) for any object X of C the map MorC(∗, X)→ MorC′(∗′, H(X)) is bijective.
Here ∗ and ∗′ are final objects of C and C′.

Proof. The implications (5) ⇒ (4) and (2) ⇒ (5) are clear.
Assume (3). Let X be a connected object of C and let ∗′ → H(X) be a morphism.
Since H(X) is connected by (3) we see that ∗′ → H(X) is an isomorphism. Hence
the G′-set corresponding to H(X) has exactly one element, which means the G-
set corresponding to X has one element which means X is isomorphic to the final
object of C, in particular there is a map ∗ → X. In this way we see that (3) ⇒ (4).
If (1) is true, then the functor Finite-G-Sets → Finite-G′-Sets is fully faithful: in
this case a map of G-sets commutes with the action of G if and only if it commutes
with the action of G′. Thus (1) ⇒ (2).
If (1) is true, then for a G-set X the G-orbits and G′-orbits agree. Thus (1) ⇒ (3).
To finish the proof it suffices to show that (4) implies (1). If (1) is false, i.e., if h
is not surjective, then there is an open subgroup U ⊂ G containing h(G′) which is
not equal to G. Then the finite G-set M = G/U has a transitive action but G′ has
a fixed point. The object X of C corresponding to M would contradict (3). In this
way we see that (3) ⇒ (1) and the proof is complete. □

Lemma 4.2.0BS8 In diagram (4.0.1) the following are equivalent
(1) h ◦ h′ is trivial, and
(2) the image of H ′ ◦ H consists of objects isomorphic to finite coproducts of

final objects.

Proof. We may replace H and H ′ by the canonical functors Finite-G-Sets →
Finite-G′-Sets→ Finite-G′′-Sets determined by h and h′. Then we are saying that
the action of G′′ on every G-set is trivial if and only if the homomorphism G′′ → G
is trivial. This is clear. □

Lemma 4.3.0BS9 In diagram (4.0.1) the following are equivalent

(1) the sequence G′′ h′

−→ G′ h−→ G → 1 is exact in the following sense: h is
surjective, h◦h′ is trivial, and Ker(h) is the smallest closed normal subgroup
containing Im(h′),

(2) H is fully faithful and an object X ′ of C′ is in the essential image of H if
and only if H ′(X ′) is isomorphic to a finite coproduct of final objects, and

(3) H is fully faithful, H ◦H ′ sends every object to a finite coproduct of final
objects, and for an object X ′ of C′ such that H ′(X ′) is a finite coproduct of
final objects there exists an object X of C and an epimorphism H(X)→ X ′.

Proof. By Lemmas 4.1 and 4.2 we may assume that H is fully faithful, h is surjec-
tive, H ′ ◦H maps objects to disjoint unions of the final object, and h ◦ h′ is trivial.
Let N ⊂ G′ be the smallest closed normal subgroup containing the image of h′. It
is clear that N ⊂ Ker(h). We may assume the functors H and H ′ are the canonical
functors Finite-G-Sets→ Finite-G′-Sets→ Finite-G′′-Sets determined by h and h′.
Suppose that (2) holds. This means that for a finite G′-set X ′ such that G′′ acts
trivially, the action of G′ factors through G. Apply this to X ′ = G′/U ′N where U ′

https://stacks.math.columbia.edu/tag/0BS8
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is a small open subgroup of G′. Then we see that Ker(h) ⊂ U ′N for all U ′. Since
N is closed this implies Ker(h) ⊂ N , i.e., (1) holds.

Suppose that (1) holds. This means that N = Ker(h). Let X ′ be a finite G′-set
such that G′′ acts trivially. This means that Ker(G′ → Aut(X ′)) is a closed normal
subgroup containing Im(h′). Hence N = Ker(h) is contained in it and the G′-action
on X ′ factors through G, i.e., (2) holds.

Suppose that (3) holds. This means that for a finite G′-set X ′ such that G′′ acts
trivially, there is a surjection of G′-sets X → X ′ where X is a G-set. Clearly this
means the action of G′ on X ′ factors through G, i.e., (2) holds.

The implication (2) ⇒ (3) is immediate. This finishes the proof. □

Lemma 4.4.0BN7 In diagram (4.0.1) the following are equivalent
(1) h′ is injective, and
(2) for every connected object X ′′ of C′′ there exists an object X ′ of C′ and a

diagram
X ′′ ← Y ′′ → H(X ′)

in C′′ where Y ′′ → X ′′ is an epimorphism and Y ′′ → H(X ′) is a monomor-
phism.

Proof. We may replace H ′ by the corresponding functor between the categories of
finite G′-sets and finite G′′-sets.

Assume h′ : G′′ → G′ is injective. Let H ′′ ⊂ G′′ be an open subgroup. Since the
topology on G′′ is the induced topology from G′ there exists an open subgroup
H ′ ⊂ G′ such that (h′)−1(H ′) ⊂ H ′′. Then the desired diagram is

G′′/H ′′ ← G′′/(h′)−1(H ′)→ G′/H ′

Conversely, assume (2) holds for the functor Finite-G′-Sets→ Finite-G′′-Sets. Let
g′′ ∈ Ker(h′). Pick any open subgroup H ′′ ⊂ G′′. By assumption there exists a
finite G′-set X ′ and a diagram

G′′/H ′′ ← Y ′′ → X ′

of G′′-sets with the left arrow surjective and the right arrow injective. Since g′′ is
in the kernel of h′ we see that g′′ acts trivially on X ′. Hence g′′ acts trivially on Y ′′

and hence trivially on G′′/H ′′. Thus g′′ ∈ H ′′. As this holds for all open subgroups
we conclude that g′′ is the identity element as desired. □

Lemma 4.5.0BTS In diagram (4.0.1) the following are equivalent
(1) the image of h′ is normal, and
(2) for every connected object X ′ of C′ such that there is a morphism from the

final object of C′′ to H ′(X ′) we have that H ′(X ′) is isomorphic to a finite
coproduct of final objects.

Proof. This translates into the following statement for the continuous group ho-
momorphism h′ : G′′ → G′: the image of h′ is normal if and only if every open
subgroup U ′ ⊂ G′ which contains h′(G′′) also contains every conjugate of h′(G′′).
The result follows easily from this; some details omitted. □

https://stacks.math.columbia.edu/tag/0BN7
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5. Finite étale morphisms

0BL6 In this section we prove enough basic results on finite étale morphisms to be able
to construct the étale fundamental group.

Let X be a scheme. We will use the notation FÉtX to denote the category of
schemes finite and étale over X. Thus

(1) an object of FÉtX is a finite étale morphism Y → X with target X, and
(2) a morphism in FÉtX from Y → X to Y ′ → X is a morphism Y → Y ′

making the diagram

Y //

  

Y ′

~~
X

commute.
We will often call an object of FÉtX a finite étale cover of X (even if Y is empty).
It turns out that there is a stack p : FÉt→ Sch over the category of schemes whose
fibre over X is the category FÉtX just defined. See Examples of Stacks, Section 6.

Example 5.1.0BN8 Let k be an algebraically closed field and X = Spec(k). In this
case FÉtX is equivalent to the category of finite sets. This works more generally
when k is separably algebraically closed. The reason is that a scheme étale over
k is the disjoint union of spectra of fields finite separable over k, see Morphisms,
Lemma 36.7.

Lemma 5.2.0BN9 Let X be a scheme. The category FÉtX has finite limits and finite
colimits and for any morphism X ′ → X the base change functor FÉtX → FÉtX′ is
exact.

Proof. Finite limits and left exactness. By Categories, Lemma 18.4 it suffices to
show that FÉtX has a final object and fibred products. This is clear because the
category of all schemes over X has a final object (namely X) and fibred products.
Also, fibred products of schemes finite étale over X are finite étale over X. More-
over, it is clear that base change commutes with these operations and hence base
change is left exact (Categories, Lemma 23.2).

Finite colimits and right exactness. By Categories, Lemma 18.7 it suffices to show
that FÉtX has finite coproducts and coequalizers. Finite coproducts are given by
disjoint unions (the empty coproduct is the empty scheme). Let a, b : Z → Y be
two morphisms of FÉtX . Since Z → X and Y → X are finite étale we can write
Z = Spec(C) and Y = Spec(B) for some finite locally free OX -algebras C and B.
The morphisms a, b induce two maps a♯, b♯ : B → C. Let A = Eq(a♯, b♯) be their
equalizer. If

Spec(A) −→ X

is finite étale, then it is clear that this is the coequalizer (after all we can write
any object of FÉtX as the relative spectrum of a sheaf of OX -algebras). This we
may do after replacing X by the members of an étale covering (Descent, Lemmas
23.23 and 23.29). Thus by Étale Morphisms, Lemma 18.3 we may assume that

https://stacks.math.columbia.edu/tag/0BN8
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Y =
∐
i=1,...,nX and Z =

∐
j=1,...,mX. Then

C =
∏

1≤j≤m
OX and B =

∏
1≤i≤n

OX

After a further replacement by the members of an open covering we may assume
that a, b correspond to maps as, bs : {1, . . . ,m} → {1, . . . , n}, i.e., the summand X
of Z corresponding to the index j maps into the summand X of Y corresponding
to the index as(j), resp. bs(j) under the morphism a, resp. b. Let {1, . . . , n} → T
be the coequalizer of as, bs. Then we see that

A =
∏

t∈T
OX

whose spectrum is certainly finite étale over X. We omit the verification that this
is compatible with base change. Thus base change is a right exact functor. □

Remark 5.3.0BNA Let X be a scheme. Consider the natural functors F1 : FÉtX → Sch
and F2 : FÉtX → Sch/X. Then

(1) The functors F1 and F2 commute with finite colimits.
(2) The functor F2 commutes with finite limits,
(3) The functor F1 commutes with connected finite limits, i.e., with equalizers

and fibre products.
The results on limits are immediate from the discussion in the proof of Lemma
5.2 and Categories, Lemma 16.2. It is clear that F1 and F2 commute with finite
coproducts. By the dual of Categories, Lemma 23.2 we need to show that F1 and
F2 commute with coequalizers. In the proof of Lemma 5.2 we saw that coequalizers
in FÉtX look étale locally like this∐

j∈J U
a //

b
//
∐
i∈I U

// ∐
t∈Coeq(a,b) U

which is certainly a coequalizer in the category of schemes. Hence the statement
follows from the fact that being a coequalizer is fpqc local as formulated precisely
in Descent, Lemma 13.8.

Lemma 5.4.0BL7 Let X be a scheme. Given U, V finite étale over X there exists a
scheme W finite étale over X such that

MorX(X,W ) = MorX(U, V )
and such that the same remains true after any base change.

Proof. By More on Morphisms, Lemma 68.4 there exists a scheme W representing
MorX(U, V ). (Use that an étale morphism is locally quasi-finite by Morphisms,
Lemmas 36.6 and that a finite morphism is separated.) This scheme clearly satisfies
the formula after any base change. To finish the proof we have to show that
W → X is finite étale. This we may do after replacing X by the members of
an étale covering (Descent, Lemmas 23.23 and 23.6). Thus by Étale Morphisms,
Lemma 18.3 we may assume that U =

∐
i=1,...,nX and V =

∐
j=1,...,mX. In this

case W =
∐
α:{1,...,n}→{1,...,m} X by inspection (details omitted) and the proof is

complete. □

Let X be a scheme. A geometric point of X is a morphism Spec(k)→ X where k is
algebraically closed. Such a point is usually denoted x, i.e., by an overlined small
case letter. We often use x to denote the scheme Spec(k) as well as the morphism,

https://stacks.math.columbia.edu/tag/0BNA
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and we use κ(x) to denote k. We say x lies over x to indicate that x ∈ X is the
image of x. We will discuss this further in Étale Cohomology, Section 29. Given x
and an étale morphism U → X we can consider

|Ux| : the underlying set of points of the scheme Ux = U ×X x

Since Ux as a scheme over x is a disjoint union of copies of x (Morphisms, Lemma
36.7) we can also describe this set as

|Ux| =

commutative
diagrams

x

x ��

u
// U

��
X


The assignment U 7→ |Ux| is a functor which is often denoted Fx.

Lemma 5.5.0BNB Let X be a connected scheme. Let x be a geometric point. The
functor

Fx : FÉtX −→ Sets, Y 7−→ |Yx|
defines a Galois category (Definition 3.6).

Proof. After identifying FÉtx with the category of finite sets (Example 5.1) we
see that our functor Fx is nothing but the base change functor for the morphism
x → X. Thus we see that FÉtX has finite limits and finite colimits and that Fx
is exact by Lemma 5.2. We will also use that finite limits in FÉtX agree with the
corresponding finite limits in the category of schemes over X, see Remark 5.3.
If Y ′ → Y is a monomorphism in FÉtX then we see that Y ′ → Y ′ ×Y Y ′ is an
isomorphism, and hence Y ′ → Y is a monomorphism of schemes. It follows that
Y ′ → Y is an open immersion (Étale Morphisms, Theorem 14.1). Since Y ′ is
finite over X and Y separated over X, the morphism Y ′ → Y is finite (Morphisms,
Lemma 44.14), hence closed (Morphisms, Lemma 44.11), hence it is the inclusion of
an open and closed subscheme of Y . It follows that Y is a connected objects of the
category FÉtX (as in Definition 3.6) if and only if Y is connected as a scheme. Then
it follows from Topology, Lemma 7.7 that Y is a finite coproduct of its connected
components both as a scheme and in the sense of Definition 3.6.
Let Y → Z be a morphism in FÉtX which induces a bijection Fx(Y ) → Fx(Z).
We have to show that Y → Z is an isomorphism. By the above we may assume Z
is connected. Since Y → Z is finite étale and hence finite locally free it suffices to
show that Y → Z is finite locally free of degree 1. This is true in a neighbourhood
of any point of Z lying over x and since Z is connected and the degree is locally
constant we conclude. □

6. Fundamental groups

0BQ8 In this section we define Grothendieck’s algebraic fundamental group. The following
definition makes sense thanks to Lemma 5.5.

Definition 6.1.0BNC Let X be a connected scheme. Let x be a geometric point of X.
The fundamental group of X with base point x is the group

π1(X,x) = Aut(Fx)
of automorphisms of the fibre functor Fx : FÉtX → Sets endowed with its canonical
profinite topology from Lemma 3.1.

https://stacks.math.columbia.edu/tag/0BNB
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Combining the above with the material from Section 3 we obtain the following
theorem.

Theorem 6.2.0BND Let X be a connected scheme. Let x be a geometric point of X.
(1) The fibre functor Fx defines an equivalence of categories

FÉtX −→ Finite-π1(X,x)-Sets

(2) Given a second geometric point x′ of X there exists an isomorphism t :
Fx → Fx′ . This gives an isomorphism π1(X,x) → π1(X,x′) compatible
with the equivalences in (1). This isomorphism is independent of t up to
inner conjugation.

(3) Given a morphism f : X → Y of connected schemes denote y = f ◦ x.
There is a canonical continuous homomorphism

f∗ : π1(X,x)→ π1(Y, y)

such that the diagram

FÉtY base change
//

Fy

��

FÉtX

Fx

��
Finite-π1(Y, y)-Sets f∗ // Finite-π1(X,x)-Sets

is commutative.

Proof. Part (1) follows from Lemma 5.5 and Proposition 3.10. Part (2) is a special
case of Lemma 3.11. For part (3) observe that the diagram

FÉtY //

Fy

��

FÉtX
Fx

��
Sets Sets

is commutative (actually commutative, not just 2-commutative) because y = f ◦x.
Hence we can apply Lemma 3.11 with the implied transformation of functors to get
(3). □

Lemma 6.3.0BNE Let K be a field and set X = Spec(K). Let K be an algebraic closure
and denote x : Spec(K)→ X the corresponding geometric point. Let Ksep ⊂ K be
the separable algebraic closure.

(1) The functor of Lemma 2.2 induces an equivalence

FÉtX −→ Finite-Gal(Ksep/K)-Sets.

compatible with Fx and the functor Finite-Gal(Ksep/K)-Sets→ Sets.
(2) This induces a canonical isomorphism

Gal(Ksep/K) −→ π1(X,x)

of profinite topological groups.

Proof. The functor of Lemma 2.2 is the same as the functor Fx because for any
Y étale over X we have

MorX(Spec(K), Y ) = MorX(Spec(Ksep), Y )

https://stacks.math.columbia.edu/tag/0BND
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Namely, as seen in the proof of Lemma 2.2 we have Y =
∐
i∈I Spec(Li) with Li/K

finite separable over K. Hence any K-algebra homomorphism Li → K factors
through Ksep. Also, note that Fx(Y ) is finite if and only if I is finite if and only if
Y → X is finite étale. This proves (1).

Part (2) is a formal consequence of (1), Lemma 3.11, and Lemma 3.3. (Please also
see the remark below.) □

Remark 6.4.0BQ9 In the situation of Lemma 6.3 let us give a more explicit con-
struction of the isomorphism Gal(Ksep/K) → π1(X,x) = Aut(Fx). Observe
that Gal(Ksep/K) = Aut(K/K) as K is the perfection of Ksep. Since Fx(Y ) =
MorX(Spec(K), Y ) we may consider the map

Aut(K/K)× Fx(Y )→ Fx(Y ), (σ, y) 7→ σ · y = y ◦ Spec(σ)

This is an action because

στ · y = y ◦ Spec(στ) = y ◦ Spec(τ) ◦ Spec(σ) = σ · (τ · y)

The action is functorial in Y ∈ FÉtX and we obtain the desired map.

7. Galois covers of connected schemes

03SF Let X be a connected scheme with geometric point x. Since Fx : FÉtX → Sets is a
Galois category (Lemma 5.5) the material in Section 3 applies. In this section we
explicity transfer some of the terminology and results to the setting of schemes and
finite étale morphisms.

We will say a finite étale morphism Y → X is a Galois cover if Y defines a Galois
object of FÉtX . For a finite étale morphism Y → X with G = AutX(Y ) the
following are equivalent

(1) Y is a Galois cover of X,
(2) Y is connected and |G| is equal to the degree of Y → X,
(3) Y is connected and G acts transitively on Fx(Y ), and
(4) Y is connected and G acts simply transitively on Fx(Y ).

This follows immediately from the discussion in Section 3.

For any finite étale morphism f : Y → X with Y connected, there is a finite étale
Galois cover Y ′ → X which dominates Y (Lemma 3.8).

The Galois objects of FÉtX correspond, via the equivalence

Fx : FÉtX → Finite-π1(X,x)-Sets

of Theorem 6.2, with the finite π1(X,x)-Sets of the form G = π1(X,x)/H where H
is a normal open subgroup. Equivalently, if G is a finite group and π1(X,x) → G
is a continuous surjection, then G viewed as a π1(X,x)-set corresponds to a Galois
covering.

If Yi → X, i = 1, 2 are finite étale Galois covers with Galois groups Gi, then there
exists a finite étale Galois cover Y → X whose Galois group is a subgroup ofG1×G2.
Namely, take the corresponding continuous homomorphisms π1(X,x)→ Gi and let
G be the image of the induced continuous homomorphism π1(X,x)→ G1 ×G2.

https://stacks.math.columbia.edu/tag/0BQ9
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8. Topological invariance of the fundamental group

0BTT The main result of this section is that a universal homeomorphism of connected
schemes induces an isomorphism on fundamental groups. See Proposition 8.4.
Instead of directly proving two schemes have the same fundamental group, we often
prove that their categories of finite étale coverings are the same. This of course
implies that their fundamental groups are equal provided they are connected.

Lemma 8.1.0BQA Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes such that the base change functor FÉtY → FÉtX is an equivalence of
categories. In this case

(1) f induces a homeomorphism π0(X)→ π0(Y ),
(2) if X or equivalently Y is connected, then π1(X,x) = π1(Y, y).

Proof. Let Y = Y0 ⨿ Y1 be a decomposition into nonempty open and closed sub-
schemes. We claim that f(X) meets both Yi. Namely, if not, say f(X) ⊂ Y1, then
we can consider the finite étale morphism V = Y1 → Y . This is not an isomorphism
but V ×Y X → X is an isomorphism, which is a contradiction.
Suppose that X = X0 ⨿X1 is a decomposition into open and closed subschemes.
Consider the finite étale morphism U = X1 → X. Then U = X×Y V for some finite
étale morphism V → Y . The degree of the morphism V → Y is locally constant,
hence we obtain a decomposition Y =

∐
d≥0 Yd into open and closed subschemes

such that V → Y has degree d over Yd. Since f−1(Yd) = ∅ for d > 1 we conclude
that Yd = ∅ for d > 1 by the above. And we conclude that f−1(Yi) = Xi for
i = 0, 1.
It follows that f−1 induces a bijection between the set of open and closed subsets
of Y and the set of open and closed subsets of X. Note that X and Y are spectral
spaces, see Properties, Lemma 2.4. By Topology, Lemma 12.10 the lattice of open
and closed subsets of a spectral space determines the set of connected components.
Hence π0(X) → π0(Y ) is bijective. Since π0(X) and π0(Y ) are profinite spaces
(Topology, Lemma 22.5) we conclude that π0(X)→ π0(Y ) is a homeomorphism by
Topology, Lemma 17.8. This proves (1). Part (2) is immediate. □

The following lemma tells us that the fundamental group of a henselian pair is the
fundamental group of the closed subset.

Lemma 8.2.09ZS Let (A, I) be a henselian pair. Set X = Spec(A) and Z = Spec(A/I).
The functor

FÉtX −→ FÉtZ , U 7−→ U ×X Z

is an equivalence of categories.

Proof. This is a translation of More on Algebra, Lemma 13.2. □

The following lemma tells us that the fundamental group of a thickening is the
same as the fundamental group of the original. We will use this in the proof of the
strong proposition concerning universal homeomorphisms below.

Lemma 8.3.0BQB Let X ⊂ X ′ be a thickening of schemes. The functor

FÉtX′ −→ FÉtX , U ′ 7−→ U ′ ×X′ X

is an equivalence of categories.

https://stacks.math.columbia.edu/tag/0BQA
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Proof. For a discussion of thickenings see More on Morphisms, Section 2. Let
U ′ → X ′ be an étale morphism such that U = U ′ ×X′ X → X is finite étale. Then
U ′ → X ′ is finite étale as well. This follows for example from More on Morphisms,
Lemma 3.4. Now, if X ⊂ X ′ is a finite order thickening then this remark combined
with Étale Morphisms, Theorem 15.2 proves the lemma. Below we will prove the
lemma for general thickenings, but we suggest the reader skip the proof.
Let X ′ =

⋃
X ′
i be an affine open covering. Set Xi = X ×X′ X ′

i, X ′
ij = X ′

i ∩ X ′
j ,

Xij = X ×X′ X ′
ij , X ′

ijk = X ′
i ∩ X ′

j ∩ X ′
k, Xijk = X ×X′ X ′

ijk. Suppose that
we can prove the theorem for each of the thickenings Xi ⊂ X ′

i, Xij ⊂ X ′
ij , and

Xijk ⊂ X ′
ijk. Then the result follows for X ⊂ X ′ by relative glueing of schemes,

see Constructions, Section 2. Observe that the schemes X ′
i, X ′

ij , X ′
ijk are each

separated as open subschemes of affine schemes. Repeating the argument one more
time we reduce to the case where the schemes X ′

i, X ′
ij , X ′

ijk are affine.
In the affine case we have X ′ = Spec(A′) and X = Spec(A′/I ′) where I ′ is a locally
nilpotent ideal. Then (A′, I ′) is a henselian pair (More on Algebra, Lemma 11.2)
and the result follows from Lemma 8.2 (which is much easier in this case). □

The “correct” way to prove the following proposition would be to deduce it from
the invariance of the étale site, see Étale Cohomology, Theorem 45.2.

Proposition 8.4.0BQN Let f : X → Y be a universal homeomorphism of schemes.
Then

FÉtY −→ FÉtX , V 7−→ V ×Y X
is an equivalence. Thus if X and Y are connected, then f induces an isomorphism
π1(X,x)→ π1(Y, y) of fundamental groups.

Proof. Recall that a universal homeomorphism is the same thing as an integral,
universally injective, surjective morphism, see Morphisms, Lemma 45.5. In partic-
ular, the diagonal ∆ : X → X ×Y X is a thickening by Morphisms, Lemma 10.2.
Thus by Lemma 8.3 we see that given a finite étale morphism U → X there is a
unique isomorphism

φ : U ×Y X → X ×Y U
of schemes finite étale over X ×Y X which pulls back under ∆ to id : U → U over
X. Since X → X ×Y X ×Y X is a thickening as well (it is bijective and a closed
immersion) we conclude that (U,φ) is a descent datum relative to X/Y . By Étale
Morphisms, Proposition 20.6 we conclude that U = X ×Y V for some V → Y
quasi-compact, separated, and étale. We omit the proof that V → Y is finite
(hints: the morphism U → V is surjective and U → Y is integral). We conclude
that FÉtY → FÉtX is essentially surjective.
Arguing in the same manner as above we see that given V1 → Y and V2 → Y
in FÉtY any morphism a : X ×Y V1 → X ×Y V2 over X is compatible with the
canonical descent data. Thus a descends to a morphism V1 → V2 over Y by Étale
Morphisms, Lemma 20.3. □

9. Finite étale covers of proper schemes

0BQC In this section we show that the fundamental group of a connected proper scheme
over a henselian local ring is the same as the fundamental group of its special fibre.
We also prove a variant of this result for a henselian pair.

https://stacks.math.columbia.edu/tag/0BQN
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We also show that the fundamental group of a connected proper scheme over an
algebraically closed field k does not change if we replace k by an algebraically closed
extension.
Instead of stating and proving the results in the connected case we prove the results
in general and we leave it to the reader to deduce the result for fundamental groups
using Lemma 8.1.

Lemma 9.1.0A48 Let A be a henselian local ring. Let X be a proper scheme over A
with closed fibre X0. Then the functor

FÉtX → FÉtX0 , U 7−→ U0 = U ×X X0

is an equivalence of categories.

Proof. The proof given here is an example of applying algebraization and approx-
imation. We proceed in a number of stages.
Essential surjectivity when A is a complete local Noetherian ring. Let Xn =
X ×Spec(A) Spec(A/mn+1). By Étale Morphisms, Theorem 15.2 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between the category of schemes étale over X0 and
the category of schemes étale over Xn. Moreover, if Un → Xn corresponds to a
finite étale morphism U0 → X0, then Un → Xn is finite too, for example by More on
Morphisms, Lemma 3.3. In this case the morphism U0 → Spec(A/m) is proper as
X0 is proper over A/m. Thus we may apply Grothendieck’s algebraization theorem
(in the form of Cohomology of Schemes, Lemma 28.2) to see that there is a finite
morphism U → X whose restriction to X0 recovers U0. By More on Morphisms,
Lemma 12.3 we see that U → X is étale at every point of U0. However, since every
point of U specializes to a point of U0 (as U is proper over A), we conclude that
U → X is étale. In this way we conclude the functor is essentially surjective.
Fully faithfulness when A is a complete local Noetherian ring. Let U → X and
V → X be finite étale morphisms and let φ0 : U0 → V0 be a morphism over X0.
Look at the morphism

Γφ0 : U0 −→ U0 ×X0 V0

This morphism is both finite étale and a closed immersion. By essential surjectivity
applied to X = U×X V we find a finite étale morphism W → U×X V whose special
fibre is isomorphic to Γφ0 . Consider the projection W → U . It is finite étale and an
isomorphism over U0 by construction. By Étale Morphisms, Lemma 14.2 W → U
is an isomorphism in an open neighbourhood of U0. Thus it is an isomorphism and
the composition φ : U ∼= W → V is the desired lift of φ0.
Essential surjectivity when A is a henselian local Noetherian G-ring. Let U0 → X0
be a finite étale morphism. Let A∧ be the completion of A with respect to the
maximal ideal. Let X∧ be the base change of X to A∧. By the result above
there exists a finite étale morphism V → X∧ whose special fibre is U0. Write
A∧ = colimAi with A→ Ai of finite type. By Limits, Lemma 10.1 there exists an i
and a finitely presented morphism Ui → XAi

whose base change to X∧ is V . After
increasing i we may assume that Ui → XAi

is finite and étale (Limits, Lemmas 8.3
and 8.10). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

https://stacks.math.columbia.edu/tag/0A48
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the ring map Ai → A∧ can be reinterpreted as a solution (a1, . . . , an) in A∧ for
the system of equations fj = 0. By Smoothing Ring Maps, Theorem 13.1 we can
approximate this solution (to order 11 for example) by a solution (b1, . . . , bn) in A.
Translating back we find an A-algebra map Ai → A which gives the same closed
point as the original map Ai → A∧ (as 11 > 1). The base change U → X of
V → XAi

by this ring map will therefore be a finite étale morphism whose special
fibre is isomorphic to U0.

Fully faithfulness when A is a henselian local Noetherian G-ring. This can be
deduced from essential surjectivity in exactly the same manner as was done in the
case that A is complete Noetherian.

General case. Let (A,m) be a henselian local ring. Set S = Spec(A) and denote
s ∈ S the closed point. By Limits, Lemma 13.3 we can write X → Spec(A) as
a cofiltered limit of proper morphisms Xi → Si with Si of finite type over Z.
For each i let si ∈ Si be the image of s. Since S = limSi and A = OS,s we
have A = colimOSi,si . The ring Ai = OSi,si is a Noetherian local G-ring (More
on Algebra, Proposition 50.12). By More on Algebra, Lemma 12.5 we see that
A = colimAhi . By More on Algebra, Lemma 50.8 the rings Ahi are G-rings. Thus
we see that A = colimAhi and

X = lim(Xi ×Si
Spec(Ahi ))

as schemes. The category of schemes finite étale over X is the limit of the category
of schemes finite étale over Xi ×Si Spec(Ahi ) (by Limits, Lemmas 10.1, 8.3, and
8.10) The same thing is true for schemes finite étale over X0 = lim(Xi ×Si

si).
Thus we formally deduce the result for X/ Spec(A) from the result for the (Xi ×Si

Spec(Ahi ))/ Spec(Ahi ) which we dealt with above. □

Lemma 9.2.0GS2 Let (A, I) be a henselian pair. Let X be a proper scheme over A.
Set X0 = X ×Spec(A) Spec(A/I). Then the functor

FÉtX → FÉtX0 , U 7−→ U0 = U ×X X0

is an equivalence of categories.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 9.1.

Essential surjectivity when A is Noetherian and I-adically complete. Let Xn =
X ×Spec(A) Spec(A/In+1). By Étale Morphisms, Theorem 15.2 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between the category of schemes étale over X0 and
the category of schemes étale over Xn. Moreover, if Un → Xn corresponds to a
finite étale morphism U0 → X0, then Un → Xn is finite too, for example by More
on Morphisms, Lemma 3.3. In this case the morphism U0 → Spec(A/I) is proper as
X0 is proper over A/I. Thus we may apply Grothendieck’s algebraization theorem
(in the form of Cohomology of Schemes, Lemma 28.2) to see that there is a finite
morphism U → X whose restriction to X0 recovers U0. By More on Morphisms,
Lemma 12.3 we see that U → X is étale at every point of U0. However, since every
point of U specializes to a point of U0 (as U is proper over A), we conclude that
U → X is étale. In this way we conclude the functor is essentially surjective.

https://stacks.math.columbia.edu/tag/0GS2
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Fully faithfulness when A is Noetherian and I-adically complete. Let U → X and
V → X be finite étale morphisms and let φ0 : U0 → V0 be a morphism over X0.
Look at the morphism

Γφ0 : U0 −→ U0 ×X0 V0

This morphism is both finite étale and a closed immersion. By essential surjectivity
applied to X = U×X V we find a finite étale morphism W → U×X V whose special
fibre is isomorphic to Γφ0 . Consider the projection W → U . It is finite étale and an
isomorphism over U0 by construction. By Étale Morphisms, Lemma 14.2 W → U
is an isomorphism in an open neighbourhood of U0. Thus it is an isomorphism and
the composition φ : U ∼= W → V is the desired lift of φ0.

Essential surjectivity when (A, I) is a henselian pair and A is a Noetherian G-ring.
Let U0 → X0 be a finite étale morphism. Let A∧ be the completion of A with
respect to I. Observe that A∧ is a Noetherian ring which is IA∧-adically complete,
see Algebra, Lemmas 97.4 and 97.6. Let X∧ be the base change of X to A∧. By
the result above there exists a finite étale morphism V → X∧ whose special fibre
is U0. Write A∧ = colimAi with A → Ai of finite type. By Limits, Lemma 10.1
there exists an i and a finitely presented morphism Ui → XAi

whose base change
to X∧ is V . After increasing i we may assume that Ui → XAi is finite and étale
(Limits, Lemmas 8.3 and 8.10). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

the ring map Ai → A∧ can be reinterpreted as a solution (a1, . . . , an) in A∧ for
the system of equations fj = 0. By Smoothing Ring Maps, Lemma 14.1 we can
approximate this solution (to order 11 for example) by a solution (b1, . . . , bn) in A.
Translating back we find an A-algebra map Ai → A which gives the same closed
point as the original map Ai → A∧ (as 11 > 1). The base change U → X of
V → XAi

by this ring map will therefore be a finite étale morphism whose special
fibre is isomorphic to U0.

Fully faithfulness when (A, I is a henselian pair and A is a Noetherian G-ring. This
can be deduced from essential surjectivity in exactly the same manner as was done
in the case that A is complete Noetherian.

General case. Let (A, I) be a henselian pair. Set S = Spec(A) and denote S0 =
Spec(A/I). By Limits, Lemma 13.3 we can write X → Spec(A) as a cofiltered
limit of proper morphisms Xi → Si with Si affine and of finite type over Z. Write
Si = Spec(Ai) and denote Ii ⊂ Ai the inverse image of I by the map Ai → A. Set
Si,0 = Spec(Ai/Ii). Since S = limSi we have A = colimAi. Thus we also have
I = colim Ii and A/I = colimAi/Ii. The ring Ai is a Noetherian G-ring (More on
Algebra, Proposition 50.12). Denote (Ahi , Ihi ) the henselization of the pair (Ai, Ii).
By More on Algebra, Lemma 12.5 we see that A = colimAhi . By More on Algebra,
Lemma 50.15 the rings Ahi are G-rings. Thus we see that A = colimAhi and

X = lim(Xi ×Si
Spec(Ahi ))

as schemes. The category of schemes finite étale over X is the limit of the category
of schemes finite étale over Xi ×Si Spec(Ahi ) (by Limits, Lemmas 10.1, 8.3, and
8.10) The same thing is true for schemes finite étale over X0 = lim(Xi ×Si

Si,0).
Thus we formally deduce the result for X/ Spec(A) from the result for the (Xi ×Si

Spec(Ahi ))/Spec(Ahi ) which we dealt with above. □
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Lemma 9.3.0A49 Let k′/k be an extension of algebraically closed fields. Let X be a
proper scheme over k. Then the functor

U 7−→ Uk′

is an equivalence of categories between schemes finite étale over X and schemes
finite étale over Xk′ .

Proof. Let us prove the functor is essentially surjective. Let U ′ → Xk′ be a
finite étale morphism. Write k′ = colimAi as a filtered colimit of finite type k-
algebras. By Limits, Lemma 10.1 there exists an i and a finitely presented morphism
Ui → XAi

whose base change to Xk′ is U ′. After increasing i we may assume that
Ui → XAi

is finite and étale (Limits, Lemmas 8.3 and 8.10). Since k is algebraically
closed we can find a k-valued point t in Spec(Ai). Let U = (Ui)t be the fibre of
Ui over t. Let Ahi be the henselization of (Ai)m where m is the maximal ideal
corresponding to the point t. By Lemma 9.1 we see that (Ui)Ah

i
= U ×Spec(Ahi ) as

schemes over XAh
i
. Now since Ahi is algebraic over Ai (see for example discussion

in Smoothing Ring Maps, Example 13.3) and since k′ is algebraically closed we can
find a ring map Ahi → k′ extending the given inclusion Ai ⊂ k′. Hence we conclude
that U ′ is isomorphic to the base change of U . The proof of fully faithfulness is
exactly the same. □

10. Local connectedness

0BQD In this section we ask when π1(U) → π1(X) is surjective for U a dense open of a
scheme X. We will see that this is the case (roughly) when U ∩B is connected for
any small “ball” B around a point x ∈ X \ U .

Lemma 10.1.0BQE Let f : X → Y be a morphism of schemes. If f(X) is dense in Y

then the base change functor FÉtY → FÉtX is faithful.

Proof. Since the category of finite étale coverings has an internal hom (Lemma
5.4) it suffices to prove the following: Given W finite étale over Y and a morphism
s : X → W over X there is at most one section t : Y → W such that s = t ◦ f .
Consider two sections t1, t2 : Y →W such that s = t1◦f = t2◦f . Since the equalizer
of t1 and t2 is closed in Y (Schemes, Lemma 21.5) and since f(X) is dense in Y
we see that t1 and t2 agree on Yred. Then it follows that t1 and t2 have the same
image which is an open and closed subscheme of W mapping isomorphically to Y
(Étale Morphisms, Proposition 6.1) hence they are equal. □

The condition in the following lemma that the punctured spectrum of the strict
henselization is connected follows for example from the assumption that the local
ring is geometrically unibranch, see More on Algebra, Lemma 106.5. There is a
partial converse in Properties, Lemma 15.3.

Lemma 10.2.0BLQ Let (A,m) be a local ring. Set X = Spec(A) and let U = X \ {m}.
If the punctured spectrum of the strict henselization of A is connected, then

FÉtX −→ FÉtU , Y 7−→ Y ×X U

is a fully faithful functor.

Proof. Assume A is strictly henselian. In this case any finite étale cover Y of X
is isomorphic to a finite disjoint union of copies of X. Thus it suffices to prove

https://stacks.math.columbia.edu/tag/0A49
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that any morphism U → U ⨿ . . . ⨿ U over U , extends uniquely to a morphism
X → X ⨿ . . .⨿X over X. If U is connected (in particular nonempty), then this is
true.
The general case. Since the category of finite étale coverings has an internal hom
(Lemma 5.4) it suffices to prove the following: Given Y finite étale over X any
morphism s : U → Y over X extends to a morphism t : X → Y over X. Let Ash
be the strict henselization of A and denote Xsh = Spec(Ash), Ush = U ×X Xsh,
Y sh = Y ×X Xsh. By the first paragraph and our assumption on A, we can extend
the base change ssh : Ush → Y sh of s to tsh : Xsh → Y sh. Set A′ = Ash ⊗A Ash.
Then the two pullbacks t′1, t′2 of tsh to X ′ = Spec(A′) are extensions of the pullback
s′ of s to U ′ = U ×X X ′. As A→ A′ is flat we see that U ′ ⊂ X ′ is (topologically)
dense by going down for A→ A′ (Algebra, Lemma 39.19). Thus t′1 = t′2 by Lemma
10.1. Hence tsh descends to a morphism t : X → Y for example by Descent, Lemma
13.7. □

In view of Lemma 10.2 it is interesting to know when the punctured spectrum of a
ring (and of its strict henselization) is connected. There is a famous lemma due to
Hartshorne which gives a sufficient condition, see Local Cohomology, Lemma 3.1.

Lemma 10.3.0BQF Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) the underlying topological space of X is Noetherian, and
(2) for every x ∈ X \ U the punctured spectrum of the strict henselization of
OX,x is connected.

Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let φ : (Y1)U → (Y2)U be a morphism
over U . We have to show that φ lifts uniquely to a morphism Y1 → Y2 over X.
Uniqueness follows from Lemma 10.1.
Let x ∈ X \ U be a generic point of an irreducible component of X \ U . Set
V = U ×X Spec(OX,x). By our choice of x this is the punctured spectrum of
Spec(OX,x). By Lemma 10.2 we can extend the morphism φV : (Y1)V → (Y2)V
uniquely to a morphism (Y1)Spec(OX,x) → (Y2)Spec(OX,x). By Limits, Lemma 20.3
we find an open U ⊂ U ′ containing x and an extension φ′ : (Y1)U ′ → (Y2)U ′ of φ.
Since the underlying topological space of X is Noetherian this finishes the proof by
Noetherian induction on the complement of the open over which φ is defined. □

Lemma 10.4.0BSA Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) U → X is quasi-compact,
(2) every point of X \ U is closed, and
(3) for every x ∈ X \ U the punctured spectrum of the strict henselization of
OX,x is connected.

Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let φ : (Y1)U → (Y2)U be a morphism
over U . We have to show that φ lifts uniquely to a morphism Y1 → Y2 over X.
Uniqueness follows from Lemma 10.1.
Let x ∈ X \ U . Set V = U ×X Spec(OX,x). Since every point of X \ U is closed V
is the punctured spectrum of Spec(OX,x). By Lemma 10.2 we can extend the mor-
phism φV : (Y1)V → (Y2)V uniquely to a morphism (Y1)Spec(OX,x) → (Y2)Spec(OX,x).

https://stacks.math.columbia.edu/tag/0BQF
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By Limits, Lemma 20.3 (this uses that U is retrocompact in X) we find an open
U ⊂ U ′

x containing x and an extension φ′
x : (Y1)U ′

x
→ (Y2)U ′

x
of φ. Note that given

two points x, x′ ∈ X \U the morphisms φ′
x and φ′

x′ agree over U ′
x∩U ′

x′ as U is dense
in that open (Lemma 10.1). Thus we can extend φ to

⋃
U ′
x = X as desired. □

Lemma 10.5.0BQG Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) every quasi-compact open of X has finitely many irreducible components,
(2) for every x ∈ X \ U the punctured spectrum of the strict henselization of
OX,x is connected.

Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let φ : (Y1)U → (Y2)U be a morphism
over U . We have to show that φ lifts uniquely to a morphism Y1 → Y2 over X.
Uniqueness follows from Lemma 10.1. We will prove existence by showing that we
can enlarge U if U ̸= X and using Zorn’s lemma to finish the proof.
Let x ∈ X \ U be a generic point of an irreducible component of X \ U . Set V =
U×X Spec(OX,x). By our choice of x this is the punctured spectrum of Spec(OX,x).
By Lemma 10.2 we can extend the morphism φV : (Y1)V → (Y2)V (uniquely)
to a morphism (Y1)Spec(OX,x) → (Y2)Spec(OX,x). Choose an affine neighbourhood
W ⊂ X of x. Since U ∩W is dense in W it contains the generic points η1, . . . , ηn
of W . Choose an affine open W ′ ⊂W ∩ U containing η1, . . . , ηn. Set V ′ = W ′ ×X
Spec(OX,x). By Limits, Lemma 20.3 applied to x ∈ W ⊃ W ′ we find an open
W ′ ⊂ W ′′ ⊂ W with x ∈ W ′′ and a morphism φ′′ : (Y1)W ′′ → (Y2)W ′′ agreeing
with φ over W ′. Since W ′ is dense in W ′′ ∩ U , we see by Lemma 10.1 that φ and
φ′′ agree over U ∩W ′. Thus φ and φ′′ glue to a morphism φ′ over U ′ = U ∪W ′′

agreeing with φ over U . Observe that x ∈ U ′ so that we’ve extended φ to a strictly
larger open.
Consider the set S of pairs (U ′, φ′) where U ⊂ U ′ and φ′ is an extension of φ.
We endow S with a partial ordering in the obvious manner. If (U ′

i , φ
′
i) is a totally

ordered subset, then it has a maximum (U ′, φ′). Just take U ′ =
⋃
U ′
i and let

φ′ : (Y1)U ′ → (Y2)U ′ be the morphism agreeing with φ′
i over U ′

i . Thus Zorn’s
lemma applies and S has a maximal element. By the argument above we see that
this maximal element is an extension of φ over all of X. □

Lemma 10.6.0BSB Let (A,m) be a local ring. Set X = Spec(A) and U = X \ {m}.
Let Ush be the punctured spectrum of the strict henselization Ash of A. Assume U
is quasi-compact and Ush is connected. Then the sequence

π1(Ush, u)→ π1(U, u)→ π1(X,u)→ 1
is exact in the sense of Lemma 4.3 part (1).

Proof. The map π1(U)→ π1(X) is surjective by Lemmas 10.2 and 4.1.
Write Xsh = Spec(Ash). Let Y → X be a finite étale morphism. Then Y sh =
Y ×X Xsh → Xsh is a finite étale morphism. Since Ash is strictly henselian we
see that Y sh is isomorphic to a disjoint union of copies of Xsh. Thus the same is
true for Y ×X Ush. It follows that the composition π1(Ush) → π1(U) → π1(X) is
trivial, see Lemma 4.2.
To finish the proof, it suffices according to Lemma 4.3 to show the following: Given
a finite étale morphism V → U such that V ×U Ush is a disjoint union of copies of

https://stacks.math.columbia.edu/tag/0BQG
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Ush, we can find a finite étale morphism Y → X with V ∼= Y ×X U over U . The
assumption implies that there exists a finite étale morphism Y sh → Xsh and an
isomorphism V ×U Ush ∼= Y sh ×Xsh Ush. Consider the following diagram

U

��

Ush

��

oo Ush ×U Ush

��

oo
oo

Ush ×U Ush ×U Ush

��

oooo
oo

X Xshoo Xsh ×X Xsh
oo
oo

Xsh ×X Xsh ×X Xsh
oo oo
oo

Since U ⊂ X is quasi-compact by assumption, all the downward arrows are quasi-
compact open immersions. Let ξ ∈ Xsh ×X Xsh be a point not in Ush ×U Ush.
Then ξ lies over the closed point xsh of Xsh. Consider the local ring homomorphism

Ash = OXsh,xsh → OXsh×XXsh,ξ

determined by the first projection Xsh ×X Xsh. This is a filtered colimit of lo-
cal homomorphisms which are localizations étale ring maps. Since Ash is strictly
henselian, we conclude that it is an isomorphism. Since this holds for every ξ in the
complement it follows there are no specializations among these points and hence ev-
ery such ξ is a closed point (you can also prove this directly). As the local ring at ξ
is isomorphic to Ash, it is strictly henselian and has connected punctured spectrum.
Similarly for points ξ of Xsh×XXsh×XXsh not in Ush×U Ush×U Ush. It follows
from Lemma 10.4 that pullback along the vertical arrows induce fully faithful func-
tors on the categories of finite étale schemes. Thus the canonical descent datum on
V ×U Ush relative to the fpqc covering {Ush → U} translates into a descent datum
for Y sh relative to the fpqc covering {Xsh → X}. Since Y sh → Xsh is finite hence
affine, this descent datum is effective (Descent, Lemma 37.1). Thus we get an affine
morphism Y → X and an isomorphism Y ×X Xsh → Y sh compatible with descent
data. By fully faithfulness of descent data (as in Descent, Lemma 35.11) we get an
isomorphism V → U ×X Y . Finally, Y → X is finite étale as Y sh → Xsh is, see
Descent, Lemmas 23.29 and 23.23. □

Let X be an irreducible scheme. Let η ∈ X be the generic point. The canonical
morphism η → X induces a canonical map

(10.6.1)0BQH Gal(κ(η)sep/κ(η)) = π1(η, η) −→ π1(X, η)

The identification on the left hand side is Lemma 6.3.

Lemma 10.7.0BQI Let X be an irreducible, geometrically unibranch scheme. For any
nonempty open U ⊂ X the canonical map

π1(U, u) −→ π1(X,u)

is surjective. The map (10.6.1) π1(η, η)→ π1(X, η) is surjective as well.

Proof. By Lemma 8.3 we may replace X by its reduction. Thus we may assume
that X is an integral scheme. By Lemma 4.1 the assertion of the lemma translates
into the statement that the functors FÉtX → FÉtU and FÉtX → FÉtη are fully
faithful.

The result for FÉtX → FÉtU follows from Lemma 10.5 and the fact that for a local
ring A which is geometrically unibranch its strict henselization has an irreducible
spectrum. See More on Algebra, Lemma 106.5.

https://stacks.math.columbia.edu/tag/0BQI
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Observe that the residue field κ(η) = OX,η is the filtered colimit of OX(U) over
U ⊂ X nonempty open affine. Hence FÉtη is the colimit of the categories FÉtU
over such U , see Limits, Lemmas 10.1, 8.3, and 8.10. A formal argument then
shows that fully faithfulness for FÉtX → FÉtη follows from the fully faithfulness of
the functors FÉtX → FÉtU . □

Lemma 10.8.0BSC Let X be a scheme. Let x1, . . . , xn ∈ X be a finite number of closed
points such that

(1) U = X \ {x1, . . . , xn} is connected and is a retrocompact open of X, and
(2) for each i the punctured spectrum Ushi of the strict henselization of OX,xi

is connected.
Then the map π1(U)→ π1(X) is surjective and the kernel is the smallest closed nor-
mal subgroup of π1(U) containing the image of π1(Ushi )→ π1(U) for i = 1, . . . , n.

Proof. Surjectivity follows from Lemmas 10.4 and 4.1. We can consider the se-
quence of maps

π1(U)→ . . .→ π1(X \ {x1, x2})→ π1(X \ {x1})→ π1(X)
A group theory argument then shows it suffices to prove the statement on the kernel
in the case n = 1 (details omitted). Write x = x1, Ush = Ush1 , set A = OX,x, and
let Ash be the strict henselization. Consider the diagram

U

��

Spec(A) \ {m}oo

��

Ush

��

oo

X Spec(A)oo Spec(Ash)oo

By Lemma 4.3 we have to show finite étale morphisms V → U which pull back
to trivial coverings of Ush extend to finite étale schemes over X. By Lemma 10.6
we know the corresponding statement for finite étale schemes over the punctured
spectrum of A. However, by Limits, Lemma 20.1 schemes of finite presentation
over X are the same thing as schemes of finite presentation over U and A glued
over the punctured spectrum of A. This finishes the proof. □

11. Fundamental groups of normal schemes

0BQJ Let X be an integral, geometrically unibranch scheme. In the previous section we
have seen that the fundamental group of X is a quotient of the Galois group of the
function field K of X. Since the map is continuous the kernel is a normal closed
subgroup of the Galois group. Hence this kernel corresponds to a Galois extension
M/K by Galois theory (Fields, Theorem 22.4). In this section we will determine
M when X is a normal integral scheme.
Let X be an integral normal scheme with function field K. Let L/K be a finite
extension. Consider the normalization Y → X of X in the morphism Spec(L) →
X as defined in Morphisms, Section 53. We will say (in this setting) that X is
unramified in L if Y → X is an unramified morphism of schemes. In Lemma
13.4 we will elucidate this condition. Observe that the scheme theoretic fibre of
Y → X over Spec(K) is Spec(L). Hence the field extension L/K is separable if X
is unramified in L, see Morphisms, Lemmas 35.11.

Lemma 11.1.0BQK In the situation above the following are equivalent

https://stacks.math.columbia.edu/tag/0BSC
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(1) X is unramified in L,
(2) Y → X is étale, and
(3) Y → X is finite étale.

Proof. Observe that Y → X is an integral morphism. In each case the morphism
Y → X is locally of finite type by definition. Hence we find that in each case Y → X
is finite by Morphisms, Lemma 44.4. In particular we see that (2) is equivalent to
(3). An étale morphism is unramified, hence (2) implies (1).

Conversely, assume Y → X is unramified. Since a normal scheme is geometrically
unibranch (Properties, Lemma 15.2), we see that the morphism Y → X is étale
by More on Morphisms, Lemma 37.2. We also give a direct proof in the next
paragraph.

Let x ∈ X. We can choose an étale neighbourhood (U, u)→ (X,x) such that

Y ×X U =
∐

Vj −→ U

is a disjoint union of closed immersions, see Étale Morphisms, Lemma 17.3. Shrink-
ing we may assume U is quasi-compact. Then U has finitely many irreducible com-
ponents (Descent, Lemma 16.3). Since U is normal (Descent, Lemma 18.2) the
irreducible components of U are open and closed (Properties, Lemma 7.5) and we
may assume U is irreducible. Then U is an integral scheme whose generic point ξ
maps to the generic point of X. On the other hand, we know that Y ×X U is the
normalization of U in Spec(L)×X U by More on Morphisms, Lemma 19.2. Every
point of Spec(L) ×X U maps to ξ. Thus every Vj contains a point mapping to ξ

by Morphisms, Lemma 53.9. Thus Vj → U is an isomorphism as U = {ξ}. Thus
Y ×X U → U is étale. By Descent, Lemma 23.29 we conclude that Y → X is étale
over the image of U → X (an open neighbourhood of x). □

Lemma 11.2.0BQL Let X be a normal integral scheme with function field K. Let
Y → X be a finite étale morphism. If Y is connected, then Y is an integral normal
scheme and Y is the normalization of X in the function field of Y .

Proof. The scheme Y is normal by Descent, Lemma 18.2. Since Y → X is flat
every generic point of Y maps to the generic point of X by Morphisms, Lemma
25.9. Since Y → X is finite we see that Y has a finite number of irreducible
components. Thus Y is the disjoint union of a finite number of integral normal
schemes by Properties, Lemma 7.5. Thus if Y is connected, then Y is an integral
normal scheme.

Let L be the function field of Y and let Y ′ → X be the normalization of X in L.
By Morphisms, Lemma 53.4 we obtain a factorization Y ′ → Y → X and Y ′ → Y
is the normalization of Y in L. Since Y is normal it is clear that Y ′ = Y (this can
also be deduced from Morphisms, Lemma 54.8). □

Proposition 11.3.0BQM Let X be a normal integral scheme with function field K.
Then the canonical map (10.6.1)

Gal(Ksep/K) = π1(η, η) −→ π1(X, η)

is identified with the quotient map Gal(Ksep/K)→ Gal(M/K) where M ⊂ Ksep is
the union of the finite subextensions L such that X is unramified in L.
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Proof. The normal scheme X is geometrically unibranch (Properties, Lemma
15.2). Hence Lemma 10.7 applies to X. Thus π1(η, η) → π1(X, η) is surjective
and top horizontal arrow of the commutative diagram

FÉtX //

��
c

**

FÉtη

��
Finite-π1(X, η)-sets // Finite-Gal(Ksep/K)-sets

is fully faithful. The left vertical arrow is the equivalence of Theorem 6.2 and the
right vertical arrow is the equivalence of Lemma 6.3. The lower horizontal arrow is
induced by the map of the proposition. By Lemmas 11.1 and 11.2 we see that the
essential image of c consists of Gal(Ksep/K)-Sets isomorphic to sets of the form

S = HomK(
∏

i=1,...,n
Li,K

sep) =
∐

i=1,...,n
HomK(Li,Ksep)

with Li/K finite separable such that X is unramified in Li. Thus if M ⊂ Ksep

is as in the statement of the lemma, then Gal(Ksep/M) is exactly the subgroup
of Gal(Ksep/K) acting trivially on every object in the essential image of c. On
the other hand, the essential image of c is exactly the category of S such that
the Gal(Ksep/K)-action factors through the surjection Gal(Ksep/K) → π1(X, η).
We conclude that Gal(Ksep/M) is the kernel. Hence Gal(Ksep/M) is a normal
subgroup, M/K is Galois, and we have a short exact sequence

1→ Gal(Ksep/M)→ Gal(Ksep/K)→ Gal(M/K)→ 1
by Galois theory (Fields, Theorem 22.4 and Lemma 22.5). The proof is done. □

Lemma 11.4.0BSM Let (A,m) be a normal local ring. Set X = Spec(A). Let Ash be
the strict henselization of A. Let K and Ksh be the fraction fields of A and Ash.
Then the sequence

π1(Spec(Ksh))→ π1(Spec(K))→ π1(X)→ 1
is exact in the sense of Lemma 4.3 part (1).

Proof. Note that Ash is a normal domain, see More on Algebra, Lemma 45.6. The
map π1(Spec(K))→ π1(X) is surjective by Proposition 11.3.
Write Xsh = Spec(Ash). Let Y → X be a finite étale morphism. Then Y sh =
Y ×X Xsh → Xsh is a finite étale morphism. Since Ash is strictly henselian we see
that Y sh is isomorphic to a disjoint union of copies of Xsh. Thus the same is true
for Y ×X Spec(Ksh). It follows that the composition π1(Spec(Ksh)) → π1(X) is
trivial, see Lemma 4.2.
To finish the proof, it suffices according to Lemma 4.3 to show the following: Given
a finite étale morphism V → Spec(K) such that V ×Spec(K) Spec(Ksh) is a disjoint
union of copies of Spec(Ksh), we can find a finite étale morphism Y → X with
V ∼= Y ×X Spec(K) over Spec(K). Write V = Spec(L), so L is a finite product
of finite separable extensions of K. Let B ⊂ L be the integral closure of A in L.
If A → B is étale, then we can take Y = Spec(B) and the proof is complete. By
Algebra, Lemma 147.4 (and a limit argument we omit) we see that B⊗AAsh is the
integral closure of Ash in Lsh = L⊗KKsh. Our assumption is that Lsh is a product
of copies of Ksh and hence Bsh is a product of copies of Ash. Thus Ash → Bsh is
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étale. As A→ Ash is faithfully flat it follows that A→ B is étale (Descent, Lemma
23.29) as desired. □

12. Group actions and integral closure

0BSN In this section we continue the discussion of More on Algebra, Section 110. Recall
that a normal local ring is a domain by definition.

Lemma 12.1.0BSP Let A be a normal domain whose fraction field K is separably
algebraically closed. Let p ⊂ A be a nonzero prime ideal. Then the residue field
κ(p) is algebraically closed.

Proof. Assume the lemma is not true to get a contradiction. Then there exists a
monic irreducible polynomial P (T ) ∈ κ(p)[T ] of degree d > 1. After replacing P
by adP (a−1T ) for suitable a ∈ A (to clear denominators) we may assume that P
is the image of a monic polynomial Q in A[T ]. Observe that Q is irreducible in
K[T ]. Namely a factorization over K leads to a factorization over A by Algebra,
Lemma 38.5 which we could reduce modulo p to get a factorization of P . As K is
separably closed, Q is not a separable polynomial (Fields, Definition 12.2). Then
the characteristic of K is p > 0 and Q has vanishing linear term (Fields, Definition
12.2). However, then we can replace Q by Q+ aT where a ∈ p is nonzero to get a
contradiction. □

Lemma 12.2.0BSQ A normal local ring with separably closed fraction field is strictly
henselian.

Proof. Let (A,m, κ) be normal local with separably closed fraction field K. If
A = K, then we are done. If not, then the residue field κ is algebraically closed by
Lemma 12.1 and it suffices to check that A is henselian. Let f ∈ A[T ] be monic and
let a0 ∈ κ be a root of multiplicity 1 of the reduction f ∈ κ[T ]. Let f =

∏
fi be the

factorization in K[T ]. By Algebra, Lemma 38.5 we have fi ∈ A[T ]. Thus a0 is a
root of fi for some i. After replacing f by fi we may assume f is irreducible. Then,
since the derivative f ′ cannot be zero in A[T ] as a0 is a single root, we conclude
that f is linear due to the fact that K is separably algebraically closed. Thus A is
henselian, see Algebra, Definition 153.1. □

Lemma 12.3.0BSS Let G be a finite group acting on a ring R. Let RG → A be a ring
map. Let q′ ⊂ A⊗RG R be a prime lying over the prime q ⊂ R. Then

Iq = {σ ∈ G | σ(q) = q and σ mod q = idκ(q)}

is equal to
Iq′ = {σ ∈ G | σ(q′) = q′ and σ mod q′ = idκ(q′)}

Proof. Since q is the inverse image of q′ and since κ(q) ⊂ κ(q′), we get Iq′ ⊂ Iq.
Conversely, if σ ∈ Iq, the σ acts trivially on the fibre ring A⊗RG κ(q). Thus σ fixes
all the primes lying over q and induces the identity on their residue fields. □

Lemma 12.4.0BST Let G be a finite group acting on a ring R. Let q ⊂ R be a prime.
Set

I = {σ ∈ G | σ(q) = q and σ mod q = idq}
Then RG → RI is étale at RI ∩ q.

https://stacks.math.columbia.edu/tag/0BSP
https://stacks.math.columbia.edu/tag/0BSQ
https://stacks.math.columbia.edu/tag/0BSS
https://stacks.math.columbia.edu/tag/0BST


FUNDAMENTAL GROUPS OF SCHEMES 30

Proof. The strategy of the proof is to use étale localization to reduce to the case
where R→ RI is a local isomorphism at RI ∩p. Let RG → A be an étale ring map.
We claim that if the result holds for the action of G on A⊗RG R and some prime
q′ of A⊗RG R lying over q, then the result is true.
To check this, note that since RG → A is flat we have A = (A⊗RGR)G, see More on
Algebra, Lemma 110.7. By Lemma 12.3 the group I does not change. Then a second
application of More on Algebra, Lemma 110.7 shows that A⊗RG RI = (A⊗RG R)I
(because RI → A⊗RG RI is flat). Thus

Spec((A⊗RG R)I)

��

// Spec(RI)

��
Spec(A) // Spec(RG)

is cartesian and the horizontal arrows are étale. Thus if the left vertical arrow is
étale in some open neighbourhood W of (A ⊗RG R)I ∩ q′, then the right vertical
arrow is étale at the points of the (open) image of W in Spec(RI), see Descent,
Lemma 14.5. In particular the morphism Spec(RI)→ Spec(RG) is étale at RI ∩ q.
Let p = RG ∩ q. By More on Algebra, Lemma 110.8 the fibre of Spec(R) →
Spec(RG) over p is finite. Moreover the residue field extensions at these points are
algebraic, normal, with finite automorphism groups by More on Algebra, Lemma
110.9. Thus we may apply More on Morphisms, Lemma 42.1 to the integral ring
map RG → R and the prime p. Combined with the claim above we reduce to the
case where R = A1 × . . . × An with each Ai having a single prime qi lying over p
such that the residue field extensions κ(qi)/κ(p) are purely inseparable. Of course
q is one of these primes, say q = q1.
It may not be the case that G permutes the factors Ai (this would be true if
the spectrum of Ai were connected, for example if RG was local). This we can
fix as follows; we suggest the reader think this through for themselves, perhaps
using idempotents instead of topology. Recall that the product decomposition
gives a corresponding disjoint union decomposition of Spec(R) by open and closed
subsets Ui. Since G is finite, we can refine this covering by a finite disjoint union
decomposition Spec(R) =

∐
j∈JWj by open and closed subsets Wj , such that for

all j ∈ J there exists a j′ ∈ J with σ(Wj) = Wj′ . The union of the Wj not
meeting {q1, . . . , qn} is a closed subset not meeting the fibre over p hence maps to a
closed subset of Spec(RG) not meeting p as Spec(R)→ Spec(RG) is closed. Hence
after replacing RG by a principal localization (permissible by the claim) we may
assume each Wj meets one of the points qi. Then we set Ui = Wj if qi ∈Wj . The
corresponding product decomposition R = A1 × . . .×An is one where G permutes
the factors Ai.
Thus we may assume we have a product decomposition R = A1×. . .×An compatible
with G-action, where each Ai has a single prime qi lying over p and the field
extensions κ(qi)/κ(p) are purely inseparable. Write A′ = A2 × . . .×An so that

R = A1 ×A′

Since q = q1 we find that every σ ∈ I preserves the product decomposition above.
Hence

RI = (A1)I × (A′)I
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Observe that I = D = {σ ∈ G | σ(q) = q} because κ(q)/κ(p) is purely inseparable.
Since the action of G on primes over p is transitive (More on Algebra, Lemma 110.8)
we conclude that, the index of I in G is n and we can write G = eI⨿σ2I⨿ . . .⨿σnI
so that Ai = σi(A1) for i = 2, . . . , n. It follows that

RG = (A1)I .
Thus the map RG → RI is étale at RI ∩ q and the proof is complete. □

The following lemma generalizes More on Algebra, Lemma 112.8.

Lemma 12.5.0BSU Let A be a normal domain with fraction field K. Let L/K be a
(possibly infinite) Galois extension. Let G = Gal(L/K) and let B be the integral
closure of A in L. Let q ⊂ B. Set

I = {σ ∈ G | σ(q) = q and σ mod q = idκ(q)}

Then (BI)BI ∩q is a filtered colimit of étale A-algebras.

Proof. We can write L as the filtered colimit of finite Galois extensions of K.
Hence it suffices to prove this lemma in case L/K is a finite Galois extension, see
Algebra, Lemma 154.3. Since A = BG as A is integrally closed in K = LG the
result follows from Lemma 12.4. □

13. Ramification theory

0BSD In this section we continue the discussion of More on Algebra, Section 112 and we
relate it to our discussion of the fundamental groups of schemes.
Let (A,m, κ) be a normal local ring with fraction field K. Choose a separable
algebraic closure Ksep. Let Asep be the integral closure of A in Ksep. Choose
maximal ideal msep ⊂ Asep. Let A ⊂ Ah ⊂ Ash be the henselization and strict
henselization. Observe that Ah and Ash are normal rings as well (More on Algebra,
Lemma 45.6). Denote Kh and Ksh their fraction fields. Since (Asep)msep is strictly
henselian by Lemma 12.2 we can choose an A-algebra map Ash → (Asep)msep .
Namely, first choose a κ-embedding4 κ(msh)→ κ(msep) and then extend (uniquely)
to an A-algebra homomorphism by Algebra, Lemma 155.10. We get the following
diagram

Ksep Kshoo Khoo Koo

(Asep)msep

OO

Ash

OO

oo Ah

OO

oo A

OO

oo

We can take the fundamental groups of the spectra of these rings. Of course, since
Ksep, (Asep)msep , and Ash are strictly henselian, for them we obtain trivial groups.
Thus the interesting part is the following

(13.0.1)0BSV

π1(Ush) //

1 %%

π1(Uh)

��

// π1(U)

��
π1(Xh) // π1(X)

4This is possible because κ(msh) is a separable algebraic closure of κ and κ(msep) is an algebraic
closure of κ by Lemma 12.1.

https://stacks.math.columbia.edu/tag/0BSU
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Here Xh and X are the spectra of Ah and A and Ush, Uh, U are the spectra of
Ksh, Kh, and K. The label 1 means that the map is trivial; this follows as it
factors through the trivial group π1(Xsh). On the other hand, the profinite group
G = Gal(Ksep/K) acts on Asep and we can make the following definitions

D = {σ ∈ G | σ(msep) = msep} ⊃ I = {σ ∈ D | σ mod msep = idκ(msep)}

These groups are sometimes called the decomposition group and the inertia group
especially when A is a discrete valuation ring.

Lemma 13.1.0BSW In the situation described above, via the isomorphism π1(U) =
Gal(Ksep/K) the diagram (13.0.1) translates into the diagram

I //

1 %%

D

��

// Gal(Ksep/K)

��
Gal(κ(msh)/κ) // Gal(M/K)

where Ksep/M/K is the maximal subextension unramified with respect to A. More-
over, the vertical arrows are surjective, the kernel of the left vertical arrow is I
and the kernel of the right vertical arrow is the smallest closed normal subgroup of
Gal(Ksep/K) containing I.

Proof. By construction the group D acts on (Asep)msep over A. By the uniqueness
of Ash → (Asep)msep given the map on residue fields (Algebra, Lemma 155.10) we
see that the image of Ash → (Asep)msep is contained in ((Asep)msep)I . On the other
hand, Lemma 12.5 shows that ((Asep)msep)I is a filtered colimit of étale extensions of
A. Since Ash is the maximal such extension, we conclude that Ash = ((Asep)msep)I .
Hence Ksh = (Ksep)I .

Recall that I is the kernel of a surjective map D → Aut(κ(msep)/κ), see More on
Algebra, Lemma 110.10. We have Aut(κ(msep)/κ) = Gal(κ(msh)/κ) as we have
seen above that these fields are the algebraic and separable algebraic closures of
κ. On the other hand, any automorphism of Ash over A is an automorphism of
Ash over Ah by the uniqueness in Algebra, Lemma 155.6. Furthermore, Ash is
the colimit of finite étale extensions Ah ⊂ A′ which correspond 1-to-1 with finite
separable extension κ′/κ, see Algebra, Remark 155.4. Thus

Aut(Ash/A) = Aut(Ash/Ah) = Gal(κ(msh)/κ)

Let κ′/κ be a finite Galois extension with Galois group G. Let Ah ⊂ A′ be the finite
étale extension corresponding to κ ⊂ κ′ by Algebra, Lemma 153.7. Then it follows
that (A′)G = Ah by looking at fraction fields and degrees (small detail omitted).
Taking the colimit we conclude that (Ash)Gal(κ(msh)/κ) = Ah. Combining all of the
above, we find Ah = ((Asep)msep)D. Hence Kh = (Ksep)D.

Since U , Uh, Ush are the spectra of the fields K, Kh, Ksh we see that the top
lines of the diagrams correspond via Lemma 6.3. By Lemma 8.2 we have π1(Xh) =
Gal(κ(msh)/κ). The exactness of the sequence 1 → I → D → Gal(κ(msh)/κ) → 1
was pointed out above. By Proposition 11.3 we see that π1(X) = Gal(M/K).
Finally, the statement on the kernel of Gal(Ksep/K)→ Gal(M/K) = π1(X) follows
from Lemma 11.4. This finishes the proof. □

https://stacks.math.columbia.edu/tag/0BSW
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Let X be a normal integral scheme with function field K. Let Ksep be a separable
algebraic closure of K. Let Xsep → X be the normalization of X in Ksep. Since
G = Gal(Ksep/K) acts on Ksep we obtain a right action of G on Xsep. For y ∈ Xsep

define
Dy = {σ ∈ G | σ(y) = y} ⊃ Iy = {σ ∈ D | σ mod my = idκ(y)}

similarly to the above. On the other hand, for x ∈ X let OshX,x be a strict henseliza-
tion, let Ksh

x be the fraction field of OshX,x and choose a K-embedding Ksh
x → Ksep.

Lemma 13.2.0BTD Let X be a normal integral scheme with function field K. With
notation as above, the following three subgroups of Gal(Ksep/K) = π1(Spec(K))
are equal

(1) the kernel of the surjection Gal(Ksep/K) −→ π1(X),
(2) the smallest normal closed subgroup containing Iy for all y ∈ Xsep, and
(3) the smallest normal closed subgroup containing Gal(Ksep/Ksh

x ) for all x ∈
X.

Proof. The equivalence of (2) and (3) follows from Lemma 13.1 which tells us
that Iy is conjugate to Gal(Ksep/Ksh

x ) if y lies over x. By Lemma 11.4 we see
that Gal(Ksep/Ksh

x ) maps trivially to π1(Spec(OX,x)) and therefore the subgroup
N ⊂ G = Gal(Ksep/K) of (2) and (3) is contained in the kernel of G −→ π1(X).
To prove the other inclusion, since N is normal, it suffices to prove: given N ⊂
U ⊂ G with U open normal, the quotient map G → G/U factors through π1(X).
In other words, if L/K is the Galois extension corresponding to U , then we have to
show that X is unramified in L (Section 11, especially Proposition 11.3). It suffices
to do this when X is affine (we do this so we can refer to algebra results in the
rest of the proof). Let Y → X be the normalization of X in L. The inclusion
L ⊂ Ksep induces a morphism π : Xsep → Y . For y ∈ Xsep the inertia group
of π(y) in Gal(L/K) is the image of Iy in Gal(L/K); this follows from More on
Algebra, Lemma 110.11. Since N ⊂ U all these inertia groups are trivial. We
conclude that Y → X is étale by applying Lemma 12.4. (Alternative: you can use
Lemma 11.4 to see that the pullback of Y to Spec(OX,x) is étale for all x ∈ X and
then conclude from there with a bit more work.) □

Example 13.3.0BTE Let X be a normal integral Noetherian scheme with function
field K. Purity of branch locus (see below) tells us that if X is regular, then
it suffices in Lemma 13.2 to consider the inertia groups I = π1(Spec(Ksh

x )) for
points x of codimension 1 in X. In general this is not enough however. Namely,
let Y = An

k = Spec(k[t1, . . . , tn]) where k is a field not of characteristic 2. Let
G = {±1} be the group of order 2 acting on Y by multiplication on the coordinates.
Set

X = Spec(k[titj , i, j ∈ {1, . . . , n}])
The embedding k[titj ] ⊂ k[t1, . . . , tn] defines a degree 2 morphism Y → X which is
unramified everywhere except over the maximal ideal m = (titj) which is a point
of codimension n in X.

Lemma 13.4.0BTF Let X be an integral normal scheme with function field K. Let L/K
be a finite extension. Let Y → X be the normalization of X in L. The following
are equivalent

(1) X is unramified in L as defined in Section 11,
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(2) Y → X is an unramified morphism of schemes,
(3) Y → X is an étale morphism of schemes,
(4) Y → X is a finite étale morphism of schemes,
(5) for x ∈ X the projection Y ×X Spec(OX,x)→ Spec(OX,x) is unramified,
(6) same as in (5) but with OhX,x,
(7) same as in (5) but with OshX,x,
(8) for x ∈ X the scheme theoretic fibre Yx is étale over x of degree ≥ [L : K].

If L/K is Galois with Galois group G, then these are also equivalent to
(9) for y ∈ Y the group Iy = {g ∈ G | g(y) = y and g mod my = idκ(y)} is

trivial.

Proof. The equivalence of (1) and (2) is the definition of (1). The equivalence of
(2), (3), and (4) is Lemma 11.1. It is straightforward to prove that (4) ⇒ (5), (5)
⇒ (6), (6) ⇒ (7).

Assume (7). Observe that OshX,x is a normal local domain (More on Algebra,
Lemma 45.6). Let Lsh = L ⊗K Ksh

x where Ksh
x is the fraction field of OshX,x.

Then Lsh =
∏
i=1,...,n Li with Li/K

sh
x finite separable. By Algebra, Lemma 147.4

(and a limit argument we omit) we see that Y ×X Spec(OshX,x) is the integral closure
of Spec(OshX,x) in Lsh. Hence by Lemma 11.1 (applied to the factors Li of Lsh) we
see that Y ×X Spec(OshX,x) → Spec(OshX,x) is finite étale. Looking at the generic
point we see that the degree is equal to [L : K] and hence we see that (8) is true.

Assume (8). Assume that x ∈ X and that the scheme theoretic fibre Yx is étale
over x of degree ≥ [L : K]. Observe that this means that Y has ≥ [L : K] geometric
points lying over x. We will show that Y → X is finite étale over a neighbourhood
of x. This will prove (1) holds. To prove this we may assume X = Spec(R), the
point x corresponds to the prime p ⊂ R, and Y = Spec(S). We apply More on
Morphisms, Lemma 42.1 and we find an étale neighbourhood (U, u)→ (X,x) such
that Y ×X U = V1 ⨿ . . . ⨿ Vm such that Vi has a unique point vi lying over u
with κ(vi)/κ(u) purely inseparable. Shrinking U if necessary we may assume U
is a normal integral scheme with generic point ξ (use Descent, Lemmas 16.3 and
18.2 and Properties, Lemma 7.5). By our remark on geometric points we see that
m ≥ [L : K]. On the other hand, by More on Morphisms, Lemma 19.2 we see
that

∐
Vi → U is the normalization of U in Spec(L) ×X U . As K ⊂ κ(ξ) is finite

separable, we can write Spec(L)×X U = Spec(
∏
i=1,...,n Li) with Li/κ(ξ) finite and

[L : K] =
∑

[Li : κ(ξ)]. Since Vj is nonempty for each j and m ≥ [L : K] we
conclude that m = n and [Li : κ(ξ)] = 1 for all i. Then Vj → U is an isomorphism
in particular étale, hence Y ×X U → U is étale. By Descent, Lemma 23.29 we
conclude that Y → X is étale over the image of U → X (an open neighbourhood
of x).

Assume L/K is Galois and (9) holds. Then Y → X is étale by Lemma 12.5. We
omit the proof that (1) implies (9). □

In the case of infinite Galois extensions of discrete valuation rings we can say a tiny
bit more. To do so we introduce the following notation. A subset S ⊂ N of integers
is multiplicativity directed if 1 ∈ S and for n,m ∈ S there exists k ∈ S with n|k and
m|k. Define a partial ordering on S by the rule n ≥S m if and only if m|n. Given
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a field κ we obtain an inverse system of finite groups {µn(κ)}n∈S with transition
maps

µn(κ) −→ µm(κ), ζ 7−→ ζn/m

for n ≥S m. Then we can form the profinite group

limn∈S µn(κ)

Observe that the limit is cofiltered (as S is directed). The construction is functorial
in κ. In particular Aut(κ) acts on this profinite group. For example, if S = {1, n},
then this gives µn(κ). If S = {1, ℓ, ℓ2, ℓ3, . . .} for some prime ℓ different from the
characteristic of κ this produces limn µℓn(κ) which is sometimes called the ℓ-adic
Tate module of the multiplicative group of κ (compare with More on Algebra,
Example 93.5).

Lemma 13.5.0BUA Let A be a discrete valuation ring with fraction field K. Let L/K
be a (possibly infinite) Galois extension. Let B be the integral closure of A in L.
Let m be a maximal ideal of B. Let G = Gal(L/K), D = {σ ∈ G | σ(m) = m}, and
I = {σ ∈ D | σ mod m = idκ(m)}. The decomposition group D fits into a canonical
exact sequence

1→ I → D → Aut(κ(m)/κA)→ 1
The inertia group I fits into a canonical exact sequence

1→ P → I → It → 1

such that
(1) P is a normal subgroup of D,
(2) P is a pro-p-group if the characteristic of κA is p > 1 and P = {1} if the

characteristic of κA is zero,
(3) there is a multiplicatively directed S ⊂ N such that κ(m) contains a primi-

tive nth root of unity for each n ∈ S (elements of S are prime to p),
(4) there exists a canonical surjective map

θcan : I → limn∈S µn(κ(m))

whose kernel is P , which satisfies θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D,
σ ∈ I, and which induces an isomorphism It → limn∈S µn(κ(m)).

Proof. This is mostly a reformulation of the results on finite Galois extensions
proved in More on Algebra, Section 112. The surjectivity of the mapD → Aut(κ(m)/κ)
is More on Algebra, Lemma 110.10. This gives the first exact sequence.

To construct the second short exact sequence let Λ be the set of finite Galois
subextensions, i.e., λ ∈ Λ corresponds to L/Lλ/K. Set Gλ = Gal(Lλ/K). Recall
that Gλ is an inverse system of finite groups with surjective transition maps and
that G = limλ∈Λ Gλ, see Fields, Lemma 22.3. We let Bλ be the integral closure
of A in Lλ. Then we set mλ = m ∩ Bλ and we denote Pλ, Iλ, Dλ the wild inertia,
inertia, and decomposition group of mλ, see More on Algebra, Lemma 112.5. For
λ ≥ λ′ the restriction defines a commutative diagram

Pλ

��

// Iλ

��

// Dλ

��

// Gλ

��
Pλ′ // Iλ′ // Dλ′ // Gλ′

https://stacks.math.columbia.edu/tag/0BUA
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with surjective vertical maps, see More on Algebra, Lemma 112.10.
From the definitions it follows immediately that I = lim Iλ and D = limDλ under
the isomorphism G = limGλ above. Since L = colimLλ we have B = colimBλ and
κ(m) = colim κ(mλ). Since the transition maps of the system Dλ are compatible
with the maps Dλ → Aut(κ(mλ)/κ) (see More on Algebra, Lemma 112.10) we see
that the map D → Aut(κ(m)/κ) is the limit of the maps Dλ → Aut(κ(mλ)/κ).
There exist canonical maps

θλ,can : Iλ −→ µnλ
(κ(mλ))

where nλ = |Iλ|/|Pλ|, where µnλ
(κ(mλ)) has order nλ, such that θλ,can(τστ−1) =

τ(θλ,can(σ)) for τ ∈ Dλ and σ ∈ Iλ, and such that we get commutative diagrams

Iλ
θλ,can

//

��

µnλ
(κ(mλ))

(−)nλ/n
λ′

��
Iλ′

θλ′,can// µnλ′ (κ(mλ′))

see More on Algebra, Remark 112.11.
Let S ⊂ N be the collection of integers nλ. Since Λ is directed, we see that S is
multiplicatively directed. By the displayed commutative diagrams above we can
take the limits of the maps θλ,can to obtain

θcan : I → limn∈S µn(κ(m)).
This map is continuous (small detail omitted). Since the transition maps of the
system of Iλ are surjective and Λ is directed, the projections I → Iλ are surjective.
For every λ the diagram

I

��

θcan

// limn∈S µn(κ(m))

��
Iλ

θλ,can // µnλ
(κ(mλ))

commutes. Hence the image of θcan surjects onto the finite group µnλ
(κ(m)) =

µnλ
(κ(mλ)) of order nλ (see above). It follows that the image of θcan is dense. On

the other hand θcan is continuous and the source is a profinite group. Hence θcan
is surjective by a topological argument.
The property θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D, σ ∈ I follows from the
corresponding properties of the maps θλ,can and the compatibility of the map
D → Aut(κ(m)) with the maps Dλ → Aut(κ(mλ)). Setting P = Ker(θcan) this
implies that P is a normal subgroup of D. Setting It = I/P we obtain the isomor-
phism It → limn∈S µn(κ(m)) from the surjectivity of θcan.
To finish the proof we show that P = limPλ which proves that P is a pro-p-group.
Recall that the tame inertia group Iλ,t = Iλ/Pλ has order nλ. Since the transition
maps Pλ → Pλ′ are surjective and Λ is directed, we obtain a short exact sequence

1→ limPλ → I → lim Iλ,t → 1
(details omitted). Since for each λ the map θλ,can induces an isomorphism Iλ,t ∼=
µnλ

(κ(m)) the desired result follows. □
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Lemma 13.6.0BUB Let A be a discrete valuation ring with fraction field K. Let Ksep

be a separable closure of K. Let Asep be the integral closure of A in Ksep. Let msep
be a maximal ideal of Asep. Let m = msep∩A, let κ = A/m, and let κ = Asep/msep.
Then κ is an algebraic closure of κ. Let G = Gal(Ksep/K), D = {σ ∈ G |
σ(msep) = msep}, and I = {σ ∈ D | σ mod msep = idκ(msep)}. The decomposition
group D fits into a canonical exact sequence

1→ I → D → Gal(κsep/κ)→ 1
where κsep ⊂ κ is the separable closure of κ. The inertia group I fits into a canonical
exact sequence

1→ P → I → It → 1
such that

(1) P is a normal subgroup of D,
(2) P is a pro-p-group if the characteristic of κA is p > 1 and P = {1} if the

characteristic of κA is zero,
(3) there exists a canonical surjective map

θcan : I → limn prime to p µn(κsep)
whose kernel is P , which satisfies θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D,
σ ∈ I, and which induces an isomorphism It → limn prime to p µn(κsep).

Proof. The field κ is the algebraic closure of κ by Lemma 12.1. Most of the
statements immediately follow from the corresponding parts of Lemma 13.5. For
example because Aut(κ/κ) = Gal(κsep/κ) we obtain the first sequence. Then the
only other assertion that needs a proof is the fact that with S as in Lemma 13.5
the limit limn∈S µn(κ) is equal to limn prime to p µn(κsep). To see this it suffices to
show that every integer n prime to p divides an element of S. Let π ∈ A be a
uniformizer and consider the splitting field L of the polynomial Xn − π. Since the
polynomial is separable we see that L is a finite Galois extension of K. Choose an
embedding L→ Ksep. Observe that if B is the integral closure of A in L, then the
ramification index of A → Bmsep∩B is divisible by n (because π has an nth root
in B; in fact the ramification index equals n but we do not need this). Then it
follows from the construction of the S in the proof of Lemma 13.5 that n divides
an element of S. □

14. Geometric and arithmetic fundamental groups

0BTU In this section we work out what happens when comparing the fundamental group
of a scheme X over a field k with the fundamental group of Xk where k is the
algebraic closure of k.

Lemma 14.1.0BTV Let I be a directed set. Let Xi be an inverse system of quasi-
compact and quasi-separated schemes over I with affine transition morphisms. Let
X = limXi as in Limits, Section 2. Then there is an equivalence of categories

colim FÉtXi
= FÉtX

If Xi is connected for all sufficiently large i and x is a geometric point of X, then
π1(X,x) = lim π1(Xi, x)

Proof. The equivalence of categories follows from Limits, Lemmas 10.1, 8.3, and
8.10. The second statement is formal given the statement on categories. □

https://stacks.math.columbia.edu/tag/0BUB
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Lemma 14.2.0BTW Let k be a field with perfection kperf . Let X be a connected scheme
over k. Then Xkperf is connected and π1(Xkperf )→ π1(X) is an isomorphism.

Proof. Special case of topological invariance of the fundamental group. See Propo-
sition 8.4. To see that Spec(kperf ) → Spec(k) is a universal homeomorphism you
can use Algebra, Lemma 46.10. □

Lemma 14.3.0BTX Let k be a field with algebraic closure k. Let X be a quasi-compact
and quasi-separated scheme over k. If the base change Xk is connected, then there
is a short exact sequence

1→ π1(Xk)→ π1(X)→ π1(Spec(k))→ 1
of profinite topological groups.

Proof. Connected objects of FÉtSpec(k) are of the form Spec(k′) → Spec(k) with
k′/k a finite separable extension. Then XSpec k′ is connected, as the morphism
Xk → XSpec(k′) is surjective and Xk is connected by assumption. Thus π1(X) →
π1(Spec(k)) is surjective by Lemma 4.1.
Before we go on, note that we may assume that k is a perfect field. Namely, we
have π1(Xkperf ) = π1(X) and π1(Spec(kperf )) = π1(Spec(k)) by Lemma 14.2.

It is clear that the composition of the functors FÉtSpec(k) → FÉtX → FÉtX
k

sends objects to disjoint unions of copies of XSpec(k). Therefore the composition
π1(Xk)→ π1(X)→ π1(Spec(k)) is the trivial homomorphism by Lemma 4.2.
Let U → X be a finite étale morphism with U connected. Observe that U×XXk =
Uk. Suppose that Uk → Xk has a section s : Xk → Uk. Then s(Xk) is an open
connected component of Uk. For σ ∈ Gal(k/k) denote sσ the base change of s by
Spec(σ). Since Uk → Xk is finite étale it has only a finite number of sections. Thus

T =
⋃
sσ(Xk)

is a finite union and we see that T is a Gal(k/k)-stable open and closed subset. By
Varieties, Lemma 7.10 we see that T is the inverse image of a closed subset T ⊂ U .
Since Uk → U is open (Morphisms, Lemma 23.4) we conclude that T is open as
well. As U is connected we see that T = U . Hence Uk is a (finite) disjoint union
of copies of Xk. By Lemma 4.5 we conclude that the image of π1(Xk)→ π1(X) is
normal.
Let V → Xk be a finite étale cover. Recall that k is the union of finite separable
extensions of k. By Lemma 14.1 we find a finite separable extension k′/k and a
finite étale morphism U → Xk′ such that V = Xk ×Xk′ U = U ×Spec(k′) Spec(k).
Then the composition U → Xk′ → X is finite étale and U ×Spec(k) Spec(k) contains
V = U ×Spec(k′) Spec(k) as an open and closed subscheme. (Because Spec(k) is an
open and closed subscheme of Spec(k′)×Spec(k) Spec(k) via the multiplication map
k′ ⊗k k → k.) By Lemma 4.4 we conclude that π1(Xk)→ π1(X) is injective.
Finally, we have to show that for any finite étale morphism U → X such that Uk is
a disjoint union of copies of Xk there is a finite étale morphism V → Spec(k) and
a surjection V ×Spec(k) X → U . See Lemma 4.3. Arguing as above using Lemma
14.1 we find a finite separable extension k′/k such that there is an isomorphism
Uk′ ∼=

∐
i=1,...,nXk′ . Thus setting V =

∐
i=1,...,n Spec(k′) we conclude. □

https://stacks.math.columbia.edu/tag/0BTW
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15. Homotopy exact sequence

0BUM In this section we discuss the following result. Let f : X → S be a flat proper
morphism of finite presentation whose geometric fibres are connected and reduced.
Assume S is connected and let s be a geometric point of S. Then there is an exact
sequence

π1(Xs)→ π1(X)→ π1(S)→ 1
of fundamental groups. See Proposition 15.2.

Lemma 15.1.0BUN [Gro71, Expose X,
Proposition 1.2, p.
262].

Let f : X → S be a proper morphism of schemes. Let X → S′ → S
be the Stein factorization of f , see More on Morphisms, Theorem 53.5. If f is of
finite presentation, flat, with geometrically reduced fibres, then S′ → S is finite
étale.

Proof. This follows from Derived Categories of Schemes, Lemma 32.8 and the
information contained in More on Morphisms, Theorem 53.5. □

Proposition 15.2.0C0J Let f : X → S be a flat proper morphism of finite presentation
whose geometric fibres are connected and reduced. Assume S is connected and let s
be a geometric point of S. Then there is an exact sequence

π1(Xs)→ π1(X)→ π1(S)→ 1
of fundamental groups.

Proof. Let Y → X be a finite étale morphism. Consider the Stein factorization
Y

��

// X

��
T // S

of Y → S. By Lemma 15.1 the morphism T → S is finite étale. In this way we
obtain a functor FÉtX → FÉtS . For any finite étale morphism U → S a morphism
Y → U ×S X over X is the same thing as a morphism Y → U over S and such
a morphism factors uniquely through the Stein factorization, i.e., corresponds to a
unique morphism T → U (by the construction of the Stein factorization as a relative
normalization in More on Morphisms, Lemma 53.1 and factorization by Morphisms,
Lemma 53.4). Thus we see that the functors FÉtX → FÉtS and FÉtS → FÉtX are
adjoints. Note that the Stein factorization of U ×S X → S is U , because the fibres
of U ×S X → U are geometrically connected.
By the discussion above and Categories, Lemma 24.4 we conclude that FÉtS →
FÉtX is fully faithful, i.e., π1(X)→ π1(S) is surjective (Lemma 4.1).
It is immediate that the composition FÉtS → FÉtX → FÉtXs

sends any U to a
disjoint union of copies of Xs. Hence π1(Xs)→ π1(X)→ π1(S) is trivial by Lemma
4.2.
Let Y → X be a finite étale morphism with Y connected such that Y ×XXs contains
a connected component Z isomorphic to Xs. Consider the Stein factorization T
as above. Let t ∈ Ts be the point corresponding to the fibre Z. Observe that T
is connected (as the image of a connected scheme) and by the surjectivity above
T ×S X is connected. Now consider the factorization

π : Y −→ T ×S X

https://stacks.math.columbia.edu/tag/0BUN
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Let x ∈ Xs be any closed point. Note that κ(t) = κ(s) = κ(x) is an algebraically
closed field. Then the fibre of π over (t, x) consists of a unique point, namely the
unique point z ∈ Z corresponding to x ∈ Xs via the isomorphism Z → Xs. We
conclude that the finite étale morphism π has degree 1 in a neighbourhood of (t, x).
Since T×SX is connected it has degree 1 everywhere and we find that Y ∼= T×SX.
Thus Y ×X Xs splits completely. Combining all of the above we see that Lemmas
4.3 and 4.5 both apply and the proof is complete. □

16. Specialization maps

0BUP In this section we construct specialization maps. Let f : X → S be a proper
morphism of schemes with geometrically connected fibres. Let s′ ⇝ s be a special-
ization of points in S. Let s and s′ be geometric points lying over s and s′. Then
there is a specialization map

sp : π1(Xs′) −→ π1(Xs)

The construction of this map is as follows. Let A be the strict henselization of
OS,s with respect to κ(s) ⊂ κ(s)sep ⊂ κ(s), see Algebra, Definition 155.3. Since
s′ ⇝ s the point s′ corresponds to a point of Spec(OS,s) and hence there is at least
one point (and potentially many points) of Spec(A) over s′ whose residue field is
a separable algebraic extension of κ(s′). Since κ(s′) is algebraically closed we can
choose a morphism φ : s′ → Spec(A) giving rise to a commutative diagram

s′
φ
//

##

Spec(A)

��

soo

{{
S

The specialization map is the composition

π1(Xs′) −→ π1(XA) = π1(Xκ(s)sep) = π1(Xs)

where the first equality is Lemma 9.1 and the second follows from Lemmas 14.2
and 9.3. By construction the specialization map fits into a commutative diagram

π1(Xs′)
sp

//

$$

π1(Xs)

zz
π1(X)

provided that X is connected. The specialization map depends on the choice of
φ : s′ → Spec(A) above and we will write spφ if we want to indicate this.

Lemma 16.1.0C0K Consider a commutative diagram

Y

g

��

// X

f

��
T // S

of schemes where f and g are proper with geometrically connected fibres. Let t′ ⇝ t
be a specialization of points in T and consider a specialization map sp : π1(Yt′) →

https://stacks.math.columbia.edu/tag/0C0K
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π1(Yt) as above. Then there is a commutative diagram

π1(Yt′) sp
//

��

π1(Yt)

��
π1(Xs′) sp // π1(Xs)

of specialization maps where s and s′ are the images of t and t′.

Proof. Let B be the strict henselization of OT,t with respect to κ(t) ⊂ κ(t)sep ⊂
κ(t). Pick ψ : t′ → Spec(B) lifting t

′ → T as in the construction of the special-
ization map. Let s and s′ denote the images of t and t′ in S. Let A be the strict
henselization of OS,s with respect to κ(s) ⊂ κ(s)sep ⊂ κ(s). Since κ(s) = κ(t), by
the functoriality of strict henselization (Algebra, Lemma 155.10) we obtain a ring
map A→ B fitting into the commutative diagram

t
′

ψ
//

��

Spec(B)

��

// T

��
s′ φ // Spec(A) // S

Here the morphism φ : s′ → Spec(A) is simply taken to be the composition t
′ →

Spec(B)→ Spec(A). Applying base change we obtain a commutative diagram

Yt′
//

��

YB

��
Xs′ // XA

and from the construction of the specialization map the commutativity of this
diagram implies the commutativity of the diagram of the lemma. □

Lemma 16.2.0C0L Let f : X → S be a proper morphism with geometrically con-
nected fibres. Let s′′ ⇝ s′ ⇝ s be specializations of points of S. A composi-
tion of specialization maps π1(Xs′′) → π1(Xs′) → π1(Xs) is a specialization map
π1(Xs′′)→ π1(Xs).

Proof. Let OS,s → A be the strict henselization constructed using κ(s) → κ(s).
Let A → κ(s′) be the map used to construct the first specialization map. Let
OS,s′ → A′ be the strict henselization constructed using κ(s′) ⊂ κ(s′). By functori-
ality of strict henselization, there is a map A→ A′ such that the composition with
A′ → κ(s′) is the given map (Algebra, Lemma 154.6). Next, let A′ → κ(s′′) be
the map used to construct the second specialization map. Then it is clear that the
composition of the first and second specialization maps is the specialization map
π1(Xs′′)→ π1(Xs) constructed using A→ A′ → κ(s′′). □

Let X → S be a proper morphism with geometrically connected fibres. Let R be
a strictly henselian valuation ring with algebraically closed fraction field and let
Spec(R) → S be a morphism. Let η, s ∈ Spec(R) be the generic and closed point.
Then we can consider the specialization map

spR : π1(Xη)→ π1(Xs)

https://stacks.math.columbia.edu/tag/0C0L
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for the base change XR/ Spec(R). Note that this makes sense as both η and s have
algebraically closed residue fields.
Lemma 16.3.0C0M Let f : X → S be a proper morphism with geometrically connected
fibres. Let s′ ⇝ s be a specialization of points of S and let sp : π1(Xs′) → π1(Xs)
be a specialization map. Then there exists a strictly henselian valuation ring R over
S with algebraically closed fraction field such that sp is isomorphic to spR defined
above.
Proof. Let OS,s → A be the strict henselization constructed using κ(s) → κ(s).
Let A → κ(s′) be the map used to construct sp. Let R ⊂ κ(s′) be a valuation
ring with fraction field κ(s′) dominating the image of A. See Algebra, Lemma
50.2. Observe that R is strictly henselian for example by Lemma 12.2 and Algebra,
Lemma 50.3. Then the lemma is clear. □

Let X → S be a proper morphism with geometrically connected fibres. Let R be
a strictly henselian discrete valuation ring and let Spec(R) → S be a morphism.
Let η, s ∈ Spec(R) be the generic and closed point. Then we can consider the
specialization map

spR : π1(Xη)→ π1(Xs)
for the base change XR/ Spec(R). Note that this makes sense as s has algebraically
closed residue field.
Lemma 16.4.0C0N Let f : X → S be a proper morphism with geometrically connected
fibres. Let s′ ⇝ s be a specialization of points of S and let sp : π1(Xs′) → π1(Xs)
be a specialization map. If S is Noetherian, then there exists a strictly henselian
discrete valuation ring R over S such that sp is isomorphic to spR defined above.
Proof. Let OS,s → A be the strict henselization constructed using κ(s) → κ(s).
Let A → κ(s′) be the map used to construct sp. Let R ⊂ κ(s′) be a discrete
valuation ring dominating the image of A, see Algebra, Lemma 119.13. Choose a
diagram of fields

κ(s) // k

A/mA //

OO

R/mR

OO

with k algebraically closed. Let Rsh be the strict henselization of R constructed
using R → k. Then Rsh is a discrete valuation ring by More on Algebra, Lemma
45.11. Denote η, o the generic and closed point of Spec(Rsh). Since the diagram of
schemes

η

��

// Spec(Rsh)

��

Spec(k)

��

oo

s′ // Spec(A) soo

commutes, we obtain a commutative diagram

π1(Xη)

��

sp
Rsh

// π1(Xo)

��
π1(Xs′) sp // Xs

https://stacks.math.columbia.edu/tag/0C0M
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of specialization maps by the construction of these maps. Since the vertical arrows
are isomorphisms (Lemma 9.3), this proves the lemma. □

17. Restriction to a closed subscheme

0EJW In this section we prove some results about the restriction functor
FÉtX −→ FÉtY , U 7−→ V = U ×X Y

where X is a scheme and Y is a closed subscheme. Using the topological invariance
of the fundamental group, we can relate the study of this functor to the completion
functor on finite locally free modules.
In the following lemmas we use the concept of coherent formal modules defined
in Cohomology of Schemes, Section 23. Given a Noetherian scheme and a quasi-
coherent sheaf of ideals I ⊂ OX we will say an object (Fn) of Coh(X, I) is finite
locally free if each Fn is a finite locally free OX/In-module.

Lemma 17.1.0EL8 Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Assume the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects (see above). Then
the restriction functor FÉtX → FÉtY is fully faithful.

Proof. Since the category of finite étale coverings has an internal hom (Lemma
5.4) it suffices to prove the following: Given U finite étale over X and a morphism
t : Y → U over X there exists a unique section s : X → U such that t = s|Y .
Picture

U

f

��
Y //

>>

X

BB

Finding the dotted arrow s is the same thing as finding an OX -algebra map
s♯ : f∗OU −→ OX

which reduces modulo the ideal sheaf of Y to the given algebra map t♯ : f∗OU →
OY . By Lemma 8.3 we can lift t uniquely to a compatible system of maps tn :
Yn → U and hence a map

lim t♯n : f∗OU −→ limOYn

of sheaves of algebras on X. Since f∗OU is a finite locally free OX -module, we
conclude that we get a unique OX -module map σ : f∗OU → OX whose completion
is lim t♯n. To see that σ is an algebra homomorphism, we need to check that the
diagram

f∗OU ⊗OX
f∗OU //

σ⊗σ
��

f∗OU

σ

��
OX ⊗OX

OX // OX
commutes. For every n we know this diagram commutes after restricting to Yn, i.e.,
the diagram commutes after applying the completion functor. Hence by faithfulness
of the completion functor we conclude. □

https://stacks.math.columbia.edu/tag/0EL8
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Lemma 17.2.0EL9 Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Assume the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

is an equivalence on full subcategories of finite locally free objects (see above). Then
the restriction functor FÉtX → FÉtY is an equivalence.

Proof. The restriction functor is fully faithful by Lemma 17.1.
Let U1 → Y be a finite étale morphism. To finish the proof we will show that U1
is in the essential image of the restriction functor.
For n ≥ 1 let Yn be the nth infinitesimal neighbourhood of Y . By Lemma 8.3
there is a unique finite étale morphism πn : Un → Yn whose base change to Y = Y1
recovers U1 → Y1. Consider the sheaves Fn = πn,∗OUn . We may and do view Fn as
an OX -module on X wich is locally isomorphic to (OX/fn+1OX)⊕r. This (Fn) is
a finite locally free object of Coh(X, I). By assumption there exists a finite locally
free OX -module F and a compatible system of isomorphisms

F/InF → Fn
of OX -modules.
To construct an algebra structure on F consider the multiplication maps Fn ⊗OX

Fn → Fn coming from the fact that Fn = πn,∗OUn are sheaves of algebras. These
define a map

(F ⊗OX
F)∧ −→ F∧

in the category Coh(X, I). Hence by assumption we may assume there is a map
µ : F ⊗OX

F → F whose restriction to Yn gives the multiplication maps above.
By faithfulness of the functor in the statement of the lemma, we conclude that
µ defines a commutative OX -algebra structure on F compatible with the given
algebra structures on Fn. Setting

U = Spec
X

((F , µ))

we obtain a finite locally free scheme π : U → X whose restriction to Y is isomorphic
to U1. The the discriminant of π is the zero set of the section

det(Qπ) : OX −→ ∧top(π∗OU )⊗−2

constructed in Discriminants, Section 3. Since the restriction of this to Yn is an
isomorphism for all n by Discriminants, Lemma 3.1 we conclude that it is an iso-
morphism. Thus π is étale by Discriminants, Lemma 3.1. □

Lemma 17.3.0ELA Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Let V be the set of open subschemes V ⊂ X containing
Y ordered by reverse inclusion. Assume the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

defines is fully faithful on the full subcategory of finite locally free objects (see above).
Then the restriction functor colimV FÉtV → FÉtY is fully faithful.

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
19. The rest of the argument is almost exactly the same as the argument in the
proof of Lemma 17.1; we urge the reader to skip it.
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Since the category of finite étale coverings has an internal hom (Lemma 5.4) it
suffices to prove the following: Given U finite étale over V ∈ V and a morphism
t : Y → U over V there exists a V ′ ≥ V and a morphism s : V ′ → U over V such
that t = s|Y . Picture

U

f

��
Y //

77

V ′

>>

// V
Finding the dotted arrow s is the same thing as finding an OV ′ -algebra map

s♯ : f∗OU |V ′ −→ OV ′

which reduces modulo the ideal sheaf of Y to the given algebra map t♯ : f∗OU →
OY . By Lemma 8.3 we can lift t uniquely to a compatible system of maps tn :
Yn → U and hence a map

lim t♯n : f∗OU −→ limOYn

of sheaves of algebras on V . Observe that f∗OU is a finite locally free OV -module.
Hence we get a V ′ ≥ V a map σ : f∗OU |V ′ → OV ′ whose completion is lim t♯n. To
see that σ is an algebra homomorphism, we need to check that the diagram

(f∗OU ⊗OV
f∗OU )|V ′ //

σ⊗σ
��

f∗OU |V ′

σ

��
OV ′ ⊗OV ′ OV ′ // OV ′

commutes. For every n we know this diagram commutes after restricting to Yn, i.e.,
the diagram commutes after applying the completion functor. Hence by faithfulness
of the completion functor we deduce that there exists a V ′′ ≥ V ′ such that σ|V ′′ is
an algebra homomorphism as desired. □

Lemma 17.4.0EK1 Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Let V be the set of open subschemes V ⊂ X containing
Y ordered by reverse inclusion. Assume the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

defines an equivalence of the full subcategories of finite locally free objects (see
explanation above). Then the restriction functor

colimV FÉtV → FÉtY
is an equivalence.

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
19. The rest of the argument is almost exactly the same as the argument in the
proof of Lemma 17.2; we urge the reader to skip it.
The restriction functor is fully faithful by Lemma 17.3.
Let U1 → Y be a finite étale morphism. To finish the proof we will show that U1
is in the essential image of the restriction functor.
For n ≥ 1 let Yn be the nth infinitesimal neighbourhood of Y . By Lemma 8.3
there is a unique finite étale morphism πn : Un → Yn whose base change to Y = Y1
recovers U1 → Y1. Consider the sheaves Fn = πn,∗OUn

. We may and do view Fn
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as an OX -module on X wich is locally isomorphic to (OX/fn+1OX)⊕r. This (Fn)
is a finite locally free object of Coh(X, I). By assumption there exists a V ∈ V and
a finite locally free OV -module F and a compatible system of isomorphisms

F/InF → Fn
of OV -modules.

To construct an algebra structure on F consider the multiplication maps Fn ⊗OV

Fn → Fn coming from the fact that Fn = πn,∗OUn are sheaves of algebras. These
define a map

(F ⊗OV
F)∧ −→ F∧

in the category Coh(X, I). Hence by assumption after shrinking V we may assume
there is a map µ : F ⊗OV

F → F whose restriction to Yn gives the multiplication
maps above. After possibly shrinking further we may assume µ defines a commu-
tative OV -algebra structure on F compatible with the given algebra structures on
Fn. Setting

U = Spec
V

((F , µ))
we obtain a finite locally free scheme over V whose restriction to Y is isomorphic to
U1. It follows that U → V is étale at all points lying over Y , see More on Morphisms,
Lemma 12.3. Thus after shrinking V once more we may assume U → V is finite
étale. This finishes the proof. □

Lemma 17.5.0EJX Let X be a scheme and let Y ⊂ X be a closed subscheme. If every
connected component of X meets Y , then the restriction functor FÉtX → FÉtY is
faithful.

Proof. Let a, b : U → U ′ be two morphisms of schemes finite étale over X whose
restriction to Y are the same. The image of a connected component of U is an
connected component of X; this follows from Topology, Lemma 7.7 applied to the
restriction of U → X to a connected component of X. Hence the image of every
connected component of U meets Y by assumption. We conclude that a = b after
restriction to each connected component of U by Étale Morphisms, Proposition 6.3.
Since the equalizer of a and b is an open subscheme of U (as the diagonal of U ′

over X is open) we conclude. □

Lemma 17.6.0EJZ Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme. Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X. Assume
one of the following holds

(1) X is quasi-affine and Γ(X,OX)→ lim Γ(Yn,OYn) is an isomorphism, or
(2) X has an ample invertible module L and Γ(X,L⊗m)→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m≫ 0, or
(3) for every finite locally free OX-module E the map Γ(X, E)→ lim Γ(Yn, E|Yn

)
is an isomorphism.

Then the restriction functor FÉtX → FÉtY is fully faithful.

Proof. This lemma follows formally from Lemma 17.1 and Algebraic and Formal
Geometry, Lemma 15.1. □

Lemma 17.7.0EK0 Let X be a Noetherian scheme and let Y ⊂ X be a closed sub-
scheme. Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X. Let V
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be the set of open subschemes V ⊂ X containing Y ordered by reverse inclusion.
Assume one of the following holds

(1) X is quasi-affine and

colimV Γ(V,OV ) −→ lim Γ(Yn,OYn)

is an isomorphism, or
(2) X has an ample invertible module L and

colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m≫ 0, or
(3) for every V ∈ V and every finite locally free OV -module E the map

colimV ′≥V Γ(V ′, E|V ′) −→ lim Γ(Yn, E|Yn
)

is an isomorphism.
Then the functor

colimV FÉtV → FÉtY

is fully faithful.

Proof. This lemma follows formally from Lemma 17.3 and Algebraic and Formal
Geometry, Lemma 15.2. □

18. Pushouts and fundamental groups

0EK3 Here is the main result.

Lemma 18.1.0EK4 In More on Morphisms, Situation 67.1, for example if Z → Y and
Z → X are closed immersions of schemes, there is an equivalence of categories

FÉtY⨿ZX −→ FÉtY ×FÉtZ
FÉtX

Proof. The pushout exists by More on Morphisms, Proposition 67.3. The functor
is given by sending a scheme U finite étale over the pushout to the base changes
Y ′ = U ×Y⨿ZX Y and X ′ = U ×Y⨿ZX X and the natural isomorphism Y ′×Y Z →
X ′×XZ over Z. To prove this functor is an equivalence we use More on Morphisms,
Lemma 67.7 to construct a quasi-inverse functor. The only thing left to prove is to
show that given a morphism U → Y ⨿ZX which is separated, quasi-finite and étale
such that X ′ → X and Y ′ → Y are finite, then U → Y ⨿Z X is finite. This can
either be deduced from the corresponding algebra fact (More on Algebra, Lemma
6.7) or it can be seen because

X ′ ⨿ Y ′ → U

is surjective and X ′ and Y ′ are proper over Y ⨿Z X (this uses the description
of the pushout in More on Morphisms, Proposition 67.3) and then we can apply
Morphisms, Lemma 41.10 to conclude that U is proper over Y ⨿Z X. Since a
quasi-finite and proper morphism is finite (More on Morphisms, Lemma 44.1) we
win. □
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19. Finite étale covers of punctured spectra, I

0BLE We first prove some results á la Lefschetz.

Situation 19.1.0BLF Let (A,m) be a Noetherian local ring and f ∈ m. We set
X = Spec(A) and X0 = Spec(A/fA) and we let U = X \ {m} and U0 = X0 \ {m}
be the punctured spectrum of A and A/fA.

Recall that for a scheme X the category of schemes finite étale over X is denoted
FÉtX , see Section 5. In Situation 19.1 we will study the base change functors

FÉtX

��

// FÉtU

��
FÉtX0

// FÉtU0

In many case the right vertical arrow is faithful.

Lemma 19.2.0BLG In Situation 19.1. Assume one of the following holds
(1) dim(A/p) ≥ 2 for every minimal prime p ⊂ A with f ̸∈ p, or
(2) every connected component of U meets U0.

Then
FÉtU −→ FÉtU0 , V 7−→ V0 = V ×U U0

is a faithful functor.

Proof. Case (2) is immediate from Lemma 17.5. Assumption (1) implies every
irreducible component of U meets U0, see Algebra, Lemma 60.13. Hence (1) follows
from (2). □

Before we prove something more interesting, we need a couple of lemmas.

Lemma 19.3.0BLH In Situation 19.1. Let V → U be a finite morphism. Let A∧ be the
m-adic completion of A, let X ′ = Spec(A∧) and let U ′ and V ′ be the base changes
of U and V to X ′. If Y ′ → X ′ is a finite morphism such that V ′ = Y ′×X′ U ′, then
there exists a finite morphism Y → X such that V = Y ×X U and Y ′ = Y ×X X ′.

Proof. This is a straightforward application of More on Algebra, Proposition 89.15.
Namely, choose generators f1, . . . , ft of m. For each i write V ×UD(fi) = Spec(Bi).
For 1 ≤ i, j ≤ n we obtain an isomorphism αij : (Bi)fj → (Bj)fi of Afifj -algebras
because the spectrum of both represent V ×U D(fifj). Write Y ′ = Spec(B′). Since
V ×U U ′ = Y ×X′ U ′ we get isomorphisms αi : B′

fi
→ Bi⊗AA∧. A straightforward

argument shows that (B′, Bi, αi, αij) is an object of Glue(A → A∧, f1, . . . , ft),
see More on Algebra, Remark 89.10. Applying the proposition cited above (and
using More on Algebra, Remark 89.19 to obtain the algebra structure) we find
an A-algebra B such that Can(B) is isomorphic to (B′, Bi, αi, αij). Setting Y =
Spec(B) we see that Y → X is a morphism which comes equipped with compatible
isomorphisms V ∼= Y ×X U and Y ′ = Y ×X X ′ as desired. □

Lemma 19.4.0BLI In Situation 19.1 assume A is henselian or more generally that
(A, (f)) is a henselian pair. Let A∧ be the m-adic completion of A, let X ′ =
Spec(A∧) and let U ′ and U ′

0 be the base changes of U and U0 to X ′. If FÉtU ′ →
FÉtU ′

0
is fully faithful, then FÉtU → FÉtU0 is fully faithful.
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Proof. Assume FÉtU ′ −→ FÉtU ′
0

is a fully faithful. Since X ′ → X is faithfully
flat, it is immediate that the functor V → V0 = V ×U U0 is faithful. Since the
category of finite étale coverings has an internal hom (Lemma 5.4) it suffices to
prove the following: Given V finite étale over U we have

MorU (U, V ) = MorU0(U0, V0)

The we assume we have a morphism s0 : U0 → V0 over U0 and we will produce a
morphism s : U → V over U .

By our assumption there does exist a morphism s′ : U ′ → V ′ whose restriction
to V ′

0 is the base change s′
0 of s0. Since V ′ → U ′ is finite étale this means that

V ′ = s′(U ′) ⨿W ′ for some W ′ → U ′ finite and étale. Choose a finite morphism
Z ′ → X ′ such that W ′ = Z ′ ×X′ U ′. This is possible by Zariski’s main theorem in
the form stated in More on Morphisms, Lemma 43.3 (small detail omitted). Then

V ′ = s′(U ′)⨿W ′ −→ X ′ ⨿ Z ′ = Y ′

is an open immersion such that V ′ = Y ′ ×X′ U ′. By Lemma 19.3 we can find
Y → X finite such that V = Y ×X U and Y ′ = Y ×X X ′. Write Y = Spec(B) so
that Y ′ = Spec(B ⊗A A∧). Then B ⊗A A∧ has an idempotent e′ corresponding to
the open and closed subscheme X ′ of Y ′ = X ′ ⨿ Z ′.

The case A is henselian (slightly easier). The image e of e′ in B ⊗A κ(m) = B/mB
lifts to an idempotent e of B as A is henselian (because B is a product of local
rings by Algebra, Lemma 153.3). Then we see that e maps to e′ by uniqueness of
lifts of idempotents (using that B ⊗A A∧ is a product of local rings). Let Y1 ⊂ Y
be the open and closed subscheme corresponding to e. Then Y1 ×X X ′ = s′(X ′)
which implies that Y1 → X is an isomorphism (by faithfully flat descent) and gives
the desired section.

The case where (A, (f)) is a henselian pair. Here we use that s′ is a lift of s′
0.

Namely, let Y0,1 ⊂ Y0 = Y ×X X0 be the closure of s0(U0) ⊂ V0 = Y0 ×X0 U0.
As X ′ → X is flat, the base change Y ′

0,1 ⊂ Y ′
0 is the closure of s′

0(U ′
0) which is

equal to X ′
0 ⊂ Y ′

0 (see Morphisms, Lemma 25.16). Since Y ′
0 → Y0 is submersive

(Morphisms, Lemma 25.12) we conclude that Y0,1 is open and closed in Y0. Let
e0 ∈ B/fB be the corresponding idempotent. By More on Algebra, Lemma 11.6
we can lift e0 to an idempotent e ∈ B. Then we conclude as before. □

In Situation 19.1 fully faithfulness of the restriction functor FÉtU −→ FÉtU0 holds
under fairly mild assumptions. In particular, the assumptions often do not imply
U is a connected scheme, but the conclusion guarantees that U and U0 have the
same number of connected components.

Lemma 19.5.0EK5 In Situation 19.1. Assume
(a) A has a dualizing complex,
(b) the pair (A, (f)) is henselian,
(c) one of the following is true

(i) Af is (S2) and every irreducible component of X not contained in X0
has dimension ≥ 3, or

(ii) for every prime p ⊂ A, f ̸∈ p we have depth(Ap) + dim(A/p) > 2.
Then the restriction functor FÉtU −→ FÉtU0 is fully faithful.
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Proof. Let A′ be the m-adic completion of A. We will show that the hypotheses
remain true for A′. This is clear for conditions (a) and (b). Condition (c)(ii) is
preserved by Local Cohomology, Lemma 11.3. Next, assume (c)(i) holds. Since
A is universally catenary (Dualizing Complexes, Lemma 17.4) we see that every
irreducible component of Spec(A′) not contained in V (f) has dimension ≥ 3, see
More on Algebra, Proposition 109.5. Since A → A′ is flat with Gorenstein fibres,
the condition that Af is (S2) implies that A′

f is (S2). References used: Dualizing
Complexes, Section 23, More on Algebra, Section 51, and Algebra, Lemma 163.4.
Thus by Lemma 19.4 we may assume that A is a Noetherian complete local ring.
Assume A is a complete local ring in addition to the other assumptions. By Lemma
17.1 the result follows from Algebraic and Formal Geometry, Lemma 15.6. □

Lemma 19.6.0BM6 [BdJ14, Corollary
1.11]

In Situation 19.1. Assume
(1) H1

m(A) and H2
m(A) are annihilated by a power of f , and

(2) A is henselian or more generally (A, (f)) is a henselian pair.
Then the restriction functor FÉtU −→ FÉtU0 is fully faithful.

Proof. By Lemma 19.4 we may assume that A is a Noetherian complete local ring.
(The assumptions carry over; use Dualizing Complexes, Lemma 9.3.) By Lemma
17.1 the result follows from Algebraic and Formal Geometry, Lemma 15.5. □

Lemma 19.7.0BLJ In Situation 19.1 assume A has depth ≥ 3 and A is henselian or
more generally (A, (f)) is a henselian pair. Then the restriction functor FÉtU →
FÉtU0 is fully faithful.

Proof. The assumption of depth forces H1
m(A) = H2

m(A) = 0, see Dualizing Com-
plexes, Lemma 11.1. Hence Lemma 19.6 applies. □

20. Purity in local case, I

0BM7 Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U = X \ {m} be
the punctured spectrum. We say purity holds for (A,m) if the restriction functor

FÉtX −→ FÉtU
is essentially surjective. In this section we try to understand how the question
changes when one passes from X to a hypersurface X0 in X, in other words, we
study a kind of local Lefschetz property for the fundamental groups of punctured
spectra. These results will be useful to proceed by induction on dimension in the
proofs of our main results on local purity, namely, Lemma 21.3, Proposition 25.3,
and Proposition 26.4.

Lemma 20.1.0BM8 Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \ {m}. Let π : Y → X be a finite morphism such that depth(OY,y) ≥ 2 for
all closed points y ∈ Y . Then Y is the spectrum of B = OY (π−1(U)).

Proof. Set V = π−1(U) and denote π′ : V → U the restriction of π. Consider the
OX -module map

π∗OY −→ j∗π
′
∗OV

where j : U → X is the inclusion morphism. We claim Divisors, Lemma 5.11
applies to this map. If so, then B = Γ(Y,OY ) and we see that the lemma holds.
Let x ∈ X be the closed point. It suffices to show that depth((π∗OY )x) ≥ 2. Let
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y1, . . . , yn ∈ Y be the points mapping to x. By Algebra, Lemma 72.11 it suffices
to show that depth(OY,yi) ≥ 2 for i = 1, . . . , n. Since this is the assumption of the
lemma the proof is complete. □

Lemma 20.2.0BLK Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \{m}. Let V be finite étale over U . Assume A has depth ≥ 2. The following
are equivalent

(1) V = Y ×X U for some Y → X finite étale,
(2) B = Γ(V,OV ) is finite étale over A.

Proof. Denote π : V → U the given finite étale morphism. Assume Y as in (1)
exists. Let x ∈ X be the point corresponding to m. Let y ∈ Y be a point mapping
to x. We claim that depth(OY,y) ≥ 2. This is true because Y → X is étale and
hence A = OX,x and OY,y have the same depth (Algebra, Lemma 163.2). Hence
Lemma 20.1 applies and Y = Spec(B).
The implication (2) ⇒ (1) is easier and the details are omitted. □

Lemma 20.3.0BM9 Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \ {m}. Assume A is normal of dimension ≥ 2. The functor

FÉtU −→
{

finite normal A-algebras B such
that Spec(B)→ X is étale over U

}
, V 7−→ Γ(V,OV )

is an equivalence. Moreover, V = Y ×X U for some Y → X finite étale if and only
if B = Γ(V,OV ) is finite étale over A.

Proof. Observe that depth(A) ≥ 2 because A is normal (Serre’s criterion for nor-
mality, Algebra, Lemma 157.4). Thus the final statement follows from Lemma 20.2.
Given π : V → U finite étale, set B = Γ(V,OV ). If we can show that B is normal
and finite over A, then we obtain the displayed functor. Since there is an obvious
quasi-inverse functor, this is also all that we have to show.
Since A is normal, the scheme V is normal (Descent, Lemma 18.2). Hence V is
a finite disjoint union of integral schemes (Properties, Lemma 7.6). Thus we may
assume V is integral. In this case the function field L of V (Morphisms, Section
49) is a finite separable extension of the fraction field of A (because we get it by
looking at the generic fibre of V → U and using Morphisms, Lemma 36.7). By
Algebra, Lemma 161.8 the integral closure B′ ⊂ L of A in L is finite over A. By
More on Algebra, Lemma 23.20 we see that B′ is a reflexive A-module, which in
turn implies that depthA(B′) ≥ 2 by More on Algebra, Lemma 23.18.
Let f ∈ m. Then Bf = Γ(V ×U D(f),OV ) (Properties, Lemma 17.1). Hence
B′
f = Bf because Bf is normal (see above), finite over Af with fraction field L. It

follows that V = Spec(B′)×X U . Then we conclude that B = B′ from Lemma 20.1
applied to Spec(B′)→ X. This lemma applies because the localizations B′

m′ of B′

at maximal ideals m′ ⊂ B′ lying over m have depth ≥ 2 by Algebra, Lemma 72.11
and the remark on depth in the preceding paragraph. □

Lemma 20.4.0BLL Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let
U = X \ {m}. Let V be finite étale over U . Let A∧ be the m-adic completion of A,
let X ′ = Spec(A∧) and let U ′ and V ′ be the base changes of U and V to X ′. The
following are equivalent

(1) V = Y ×X U for some Y → X finite étale, and
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(2) V ′ = Y ′ ×X′ U ′ for some Y ′ → X ′ finite étale.

Proof. The implication (1)⇒ (2) follows from taking the base change of a solution
Y → X. Let Y ′ → X ′ be as in (2). By Lemma 19.3 we can find Y → X finite such
that V = Y ×X U and Y ′ = Y ×X X ′. By descent we see that Y → X is finite
étale (Algebra, Lemmas 83.2 and 143.3). This finishes the proof. □

The point of the following two lemmas is that the assumptions do not force A to
have depth ≥ 3. For example if A is a complete normal local domain of dimension
≥ 3 and f ∈ m is nonzero, then the assumptions are satisfied.

Lemma 20.5.0EK6 In Situation 19.1. Let V be finite étale over U . Assume
(a) A has a dualizing complex,
(b) the pair (A, (f)) is henselian,
(c) one of the following is true

(i) Af is (S2) and every irreducible component of X not contained in X0
has dimension ≥ 3, or

(ii) for every prime p ⊂ A, f ̸∈ p we have depth(Ap) + dim(A/p) > 2.
(d) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.

Then V = Y ×X U for some Y → X finite étale.

Proof. We reduce to the complete case using Lemma 20.4. (The assumptions carry
over; see proof of Lemma 19.5.)

In the complete case we can lift Y0 → X0 to a finite étale morphism Y → X by
More on Algebra, Lemma 13.2; observe that (A, fA) is a henselian pair by More on
Algebra, Lemma 11.4. Then we can use Lemma 19.5 to see that V is isomorphic
to Y ×X U and the proof is complete. □

Lemma 20.6.0BLS In Situation 19.1. Let V be finite étale over U . Assume
(1) H1

m(A) and H2
m(A) are annihilated by a power of f ,

(2) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.
Then V = Y ×X U for some Y → X finite étale.

Proof. We reduce to the complete case using Lemma 20.4. (The assumptions carry
over; use Dualizing Complexes, Lemma 9.3.)

In the complete case we can lift Y0 → X0 to a finite étale morphism Y → X by
More on Algebra, Lemma 13.2; observe that (A, fA) is a henselian pair by More on
Algebra, Lemma 11.4. Then we can use Lemma 19.6 to see that V is isomorphic
to Y ×X U and the proof is complete. □

Lemma 20.7.0BLM In Situation 19.1. Let V be finite étale over U . Assume
(1) A has depth ≥ 3,
(2) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.

Then V = Y ×X U for some Y → X finite étale.

Proof. The assumption of depth forces H1
m(A) = H2

m(A) = 0, see Dualizing Com-
plexes, Lemma 11.1. Hence Lemma 20.6 applies. □
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21. Purity of branch locus

0BJE We will use the discriminant of a finite locally free morphism. See Discriminants,
Section 3.

Lemma 21.1.0BJG Let (A,m) be a Noetherian local ring with dim(A) ≥ 1. Let f ∈ m.
Then there exist a p ∈ V (f) with dim(Ap) = 1.

Proof. By induction on dim(A). If dim(A) = 1, then p = m works. If dim(A) >
1, then let Z ⊂ Spec(A) be an irreducible component of dimension > 1. Then
V (f) ∩ Z has dimension > 0 (Algebra, Lemma 60.13). Pick a prime q ∈ V (f) ∩ Z,
q ̸= m corresponding to a closed point of the punctured spectrum of A; this is
possible by Properties, Lemma 6.4. Then q is not the generic point of Z. Hence
0 < dim(Aq) < dim(A) and f ∈ qAq. By induction on the dimension we can find
f ∈ p ⊂ Aq with dim((Aq)p) = 1. Then p ∩A works. □

Lemma 21.2.0BJH Let f : X → Y be a morphism of locally Noetherian schemes. Let
x ∈ X. Assume

(1) f is flat,
(2) f is quasi-finite at x,
(3) x is not a generic point of an irreducible component of X,
(4) for specializations x′ ⇝ x with dim(OX,x′) = 1 our f is unramified at x′.

Then f is étale at x.

Proof. Observe that the set of points where f is unramified is the same as the set
of points where f is étale and that this set is open. See Morphisms, Definitions 35.1
and 36.1 and Lemma 36.16. To check f is étale at x we may work étale locally on
the base and on the target (Descent, Lemmas 23.29 and 31.1). Thus we can apply
More on Morphisms, Lemma 41.1 and assume that f : X → Y is finite and that x
is the unique point of X lying over y = f(x). Then it follows that f is finite locally
free (Morphisms, Lemma 48.2).

Assume f is finite locally free and that x is the unique point of X lying over
y = f(x). By Discriminants, Lemma 3.1 we find a locally principal closed subscheme
Dπ ⊂ Y such that y′ ∈ Dπ if and only if there exists an x′ ∈ X with f(x′) = y′

and f ramified at x′. Thus we have to prove that y ̸∈ Dπ. Assume y ∈ Dπ to get
a contradiction.

By condition (3) we have dim(OX,x) ≥ 1. We have dim(OX,x) = dim(OY,y) by
Algebra, Lemma 112.7. By Lemma 21.1 we can find y′ ∈ Dπ specializing to y with
dim(OY,y′) = 1. Choose x′ ∈ X with f(x′) = y′ where f is ramified. Since f is
finite it is closed, and hence x′ ⇝ x. We have dim(OX,x′) = dim(OY,y′) = 1 as
before. This contradicts property (4). □

Lemma 21.3.0BMA Let (A,m) be a regular local ring of dimension d ≥ 2. Set X =
Spec(A) and U = X \ {m}. Then

(1) the functor FÉtX → FÉtU is essentially surjective, i.e., purity holds for A,
(2) any finite A→ B with B normal which induces a finite étale morphism on

punctured spectra is étale.

Proof. Recall that a regular local ring is normal by Algebra, Lemma 157.5. Hence
(1) and (2) are equivalent by Lemma 20.3. We prove the lemma by induction on d.
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The case d = 2. In this case A → B is flat. Namely, we have going down for
A → B by Algebra, Proposition 38.7. Then dim(Bm′) = 2 for all maximal ideals
m′ ⊂ B by Algebra, Lemma 112.7. Then Bm′ is Cohen-Macaulay by Algebra,
Lemma 157.4. Hence and this is the important step Algebra, Lemma 128.1 applies
to show A→ Bm′ is flat. Then Algebra, Lemma 39.18 shows A→ B is flat. Thus
we can apply Lemma 21.2 (or you can directly argue using the easier Discriminants,
Lemma 3.1) to see that A→ B is étale.

The case d ≥ 3. Let V → U be finite étale. Let f ∈ mA, f ̸∈ m2
A. Then A/fA is

a regular local ring of dimension d− 1 ≥ 2, see Algebra, Lemma 106.3. Let U0 be
the punctured spectrum of A/fA and let V0 = V ×U U0. By Lemma 20.7 it suffices
to show that V0 is in the essential image of FÉtSpec(A/fA) → FÉtU0 . This follows
from the induction hypothesis. □

Lemma 21.4 (Purity of branch locus).0BMB [Nag59] and [Gro71,
Exp. X, Thm. 3.1]

Let f : X → Y be a morphism of locally
Noetherian schemes. Let x ∈ X and set y = f(x). Assume

(1) OX,x is normal,
(2) OY,y is regular,
(3) f is quasi-finite at x,
(4) dim(OX,x) = dim(OY,y) ≥ 1
(5) for specializations x′ ⇝ x with dim(OX,x′) = 1 our f is unramified at x′.

Then f is étale at x.

Proof. We will prove the lemma by induction on d = dim(OX,x) = dim(OY,y).

An uninteresting case is when d = 1. In that case we are assuming that f is
unramified at x and that OY,y is a discrete valuation ring (Algebra, Lemma 119.7).
Then OX,x is flat over OY,y (otherwise the map would not be quasi-finite at x) and
we see that f is flat at x. Since flat + unramified is étale we conclude (some details
omitted).

The case d ≥ 2. We will use induction on d to reduce to the case discussed in
Lemma 21.3. To check f is étale at x we may work étale locally on the base and
on the target (Descent, Lemmas 23.29 and 31.1). Thus we can apply More on
Morphisms, Lemma 41.1 and assume that f : X → Y is finite and that x is the
unique point of X lying over y. Here we use that étale extensions of local rings do
not change dimension, normality, and regularity, see More on Algebra, Section 44
and Étale Morphisms, Section 19.

Next, we can base change by Spec(OY,y) and assume that Y is the spectrum of a
regular local ring. It follows that X = Spec(OX,x) as every point of X necessarily
specializes to x.

The ring map OY,y → OX,x is finite and necessarily injective (by equality of dimen-
sions). We conclude we have going down for OY,y → OX,x by Algebra, Proposition
38.7 (and the fact that a regular ring is a normal ring by Algebra, Lemma 157.5).
Pick x′ ∈ X, x′ ̸= x with image y′ = f(x′). Then OX,x′ is normal as a localiza-
tion of a normal domain. Similarly, OY,y′ is regular (see Algebra, Lemma 110.6).
We have dim(OX,x′) = dim(OY,y′) by Algebra, Lemma 112.7 (we checked going
down above). Of course these dimensions are strictly less than d as x′ ̸= x and by
induction on d we conclude that f is étale at x′.
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Thus we arrive at the following situation: We have a finite local homomorphism
A → B of Noetherian local rings of dimension d ≥ 2, with A regular, B normal,
which induces a finite étale morphism V → U on punctured spectra. Our goal
is to show that A → B is étale. This follows from Lemma 21.3 and the proof is
complete. □

The following lemma is sometimes useful to find the maximal open subset over
which a finite étale morphism extends.

Lemma 21.5.0EY6 Let j : U → X be an open immersion of locally Noetherian schemes
such that depth(OX,x) ≥ 2 for x ̸∈ U . Let π : V → U be finite étale. Then

(1) B = j∗π∗OV is a reflexive coherent OX-algebra, set Y = Spec
X

(B),
(2) Y → X is the unique finite morphism such that V = Y×XU and depth(OY,y) ≥

2 for y ∈ Y \ V ,
(3) Y → X is étale at y if and only if Y → X is flat at y, and
(4) Y → X is étale if and only if B is finite locally free as an OX-module.

Moreover, (a) the construction of B and Y → X commutes with base change by flat
morphisms X ′ → X of locally Noetherian schemes, and (b) if V ′ → U ′ is a finite
étale morphism with U ⊂ U ′ ⊂ X open which restricts to V → U over U , then
there is a unique isomorphism Y ′ ×X U ′ = V ′ over U ′.

Proof. Observe that π∗OV is a finite locally free OU -module, in particular reflex-
ive. By Divisors, Lemma 12.12 the module j∗π∗OV is the unique reflexive coherent
module on X restricting to π∗OV over U . This proves (1).

By construction Y ×X U = V . Since B is coherent, we see that Y → X is finite. We
have depth(Bx) ≥ 2 for x ∈ X \U by Divisors, Lemma 12.11. Hence depth(OY,y) ≥
2 for y ∈ Y \V by Algebra, Lemma 72.11. Conversely, suppose that π′ : Y ′ → X is a
finite morphism such that V = Y ′×XU and depth(OY ′,y′) ≥ 2 for y′ ∈ Y ′\V . Then
π′

∗OY ′ restricts to π∗OV over U and satisfies depth((π′
∗OY ′)x) ≥ 2 for x ∈ X \ U

by Algebra, Lemma 72.11. Then π′
∗OY ′ is canonically isomorphic to j∗π∗OV for

example by Divisors, Lemma 5.11. This proves (2).

If Y → X is étale at y, then Y → X is flat at y. Conversely, suppose that Y → X
is flat at y. If y ∈ V , then Y → X is étale at y. If y ̸∈ V , then we check (1), (2),
(3), and (4) of Lemma 21.2 hold to see that Y → X is étale at y. Parts (1) and
(2) are clear and so is (3) since depth(OY,y) ≥ 2. If y′ ⇝ y is a specialization and
dim(OY,y′) = 1, then y′ ∈ V since otherwise the depth of this local ring would be
2 a contradiction by Algebra, Lemma 72.3. Hence Y → X is étale at y′ and we
conclude (4) of Lemma 21.2 holds too. This finishes the proof of (3).

Part (4) follows from (3) and the fact that ((Y → X)∗OY )x is a flat OX,x-module
if and only if OY,y is a flat OX,x-module for all y ∈ Y mapping to x, see Algebra,
Lemma 39.18. Here we also use that a finite flat module over a Noetherian ring is
finite locally free, see Algebra, Lemma 78.2 (and Algebra, Lemma 31.4).

As to the final assertions of the lemma, part (a) follows from flat base change, see
Cohomology of Schemes, Lemma 5.2 and part (b) follows from the uniqueness in
(2) applied to the restriction Y ×X U ′. □

https://stacks.math.columbia.edu/tag/0EY6


FUNDAMENTAL GROUPS OF SCHEMES 56

Lemma 21.6.0EY7 Let j : U → X be an open immersion of Noetherian schemes such
that purity holds for OX,x for all x ̸∈ U . Then

FÉtX −→ FÉtU
is essentially surjective.

Proof. Let V → U be a finite étale morphism. By Noetherian induction it suffices
to extend V → U to a finite étale morphism to a strictly larger open subset of
X. Let x ∈ X \ U be the generic point of an irreducible component of X \ U .
Then the inverse image Ux of U in Spec(OX,x) is the punctured spectrum of OX,x.
By assumption Vx = V ×U Ux is the restriction of a finite étale morphism Yx →
Spec(OX,x) to Ux. By Limits, Lemma 20.3 we find an open subscheme U ⊂ U ′ ⊂ X
containing x and a morphism V ′ → U ′ of finite presentation whose restriction to
U recovers V → U and whose restriction to Spec(OX,x) recovering Yx. Finally, the
morphism V ′ → U ′ is finite étale after possible shrinking U ′ to a smaller open by
Limits, Lemma 20.4. □

22. Finite étale covers of punctured spectra, II

0BLU In this section we prove some variants of the material discussed in Section 19.
Suppose we have a Noetherian local ring (A,m) and f ∈ m. We set X = Spec(A)
and X0 = Spec(A/fA) and we let U = X\{m} and U0 = X0\{m} be the punctured
spectrum of A and A/fA. All of this is exactly as in Situation 19.1. The difference
is that we will consider the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

In other words, we will not try to lift finite étale coverings of U0 to all of U , but
just to some open neighbourhood U ′ of U0 in U .

Lemma 22.1.0BLN In Situation 19.1. Let U ′ ⊂ U be open and contain U0. Assume
for p ⊂ A minimal with p ∈ U ′, p ̸∈ U0 we have dim(A/p) ≥ 2. Then

FÉtU ′ −→ FÉtU0 , V ′ 7−→ V0 = V ′ ×U ′ U0

is a faithful functor. Moreover, there exists a U ′ satisfying the assumption and any
smaller open U ′′ ⊂ U ′ containing U0 also satisfies this assumption. In particular,
the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is faithful.

Proof. By Algebra, Lemma 60.13 we see that V (p) meets U0 for every prime p
of A with dim(A/p) ≥ 2. Thus the displayed functor is faithful for a U as in the
statement by Lemma 17.5. To see the existence of such a U ′ note that for p ⊂ A
with p ∈ U , p ̸∈ U0 with dim(A/p) = 1 then p corresponds to a closed point of
U and hence V (p) ∩ U0 = ∅. Thus we can take U ′ to be the complement of the
irreducible components of X which do not meet U0 and have dimension 1. □

Lemma 22.2.0DXX In Situation 19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) every irreducible component of X not contained in X0 has dimension ≥ 3.

https://stacks.math.columbia.edu/tag/0EY7
https://stacks.math.columbia.edu/tag/0BLN
https://stacks.math.columbia.edu/tag/0DXX


FUNDAMENTAL GROUPS OF SCHEMES 57

Then the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is fully faithful.

Proof. To prove this we may replace A by its reduction by the topological in-
variance of the fundamental group, see Lemma 8.3. Then the result follows from
Lemma 17.3 and Algebraic and Formal Geometry, Lemma 15.7. □

Lemma 22.3.0BLP In Situation 19.1 assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor.
(3) H1

m(A/fA) is a finite A-module.
Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is fully faithful.

Proof. Follows from Lemma 17.3 and Algebraic and Formal Geometry, Lemma
15.8. □

23. Finite étale covers of punctured spectra, III

0EK7 In this section we study when in Situation 19.1. the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence of categories.

Lemma 23.1.0DXY In Situation 19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in X0
has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.
Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence.

Proof. This follows from Lemma 17.4 and Algebraic and Formal Geometry, Lemma
24.1. □

Lemma 23.2.0BLV In Situation 19.1 assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules.

Then the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence.

Proof. This follows from Lemma 17.4 and Algebraic and Formal Geometry, Lemma
24.2. □
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Remark 23.3.0BLW Let (A,m) be a complete local Noetherian ring and f ∈ m nonzero.
Suppose that Af is (S2) and every irreducible component of Spec(A) has dimension
≥ 4. Then Lemma 23.1 tells us that the category

colimU ′⊂U open, U0⊂U category of schemes finite étale over U ′

is equivalent to the category of schemes finite étale over U0. For example this holds
if A is a normal domain of dimension ≥ 4!

24. Finite étale covers of punctured spectra, IV

0EK8 Let X,X0, U, U0 be as in Situation 19.1. In this section we ask when the restriction
functor

FÉtU −→ FÉtU0

is essentially surjective. We will do this by taking results from Section 23 and then
filling in the gaps using purity. Recall that we say purity holds for a Noetherian
local ring (A,m) if the restriction functor FÉtX → FÉtU is essentially surjective
where X = Spec(A) and U = X \ {m}.

Lemma 24.1.0EK9 In Situation 19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in X0
has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.
(3) for every maximal ideal p ⊂ Af purity holds for (Af )p.

Then the restriction functor FÉtU → FÉtU0 is essentially surjective.

Proof. Let V0 → U0 be a finite étale morphism. By Lemma 23.1 there exists an
open U ′ ⊂ U containing U0 and a finite étale morphism V ′ → U whose base change
to U0 is isomorphic to V0 → U0. Since U ′ ⊃ U0 we see that U \U ′ consists of points
corresponding to prime ideals p1, . . . , pn as in (3). By assumption we can find finite
étale morphisms V ′

i → Spec(Api
) agreeing with V ′ → U ′ over U ′×U Spec(Api

). By
Limits, Lemma 20.1 applied n times we see that V ′ → U ′ extends to a finite étale
morphism V → U . □

Lemma 24.2.0EKA Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules,

(4) for every maximal ideal p ⊂ Af purity holds for (Af )p.
Then the restriction functor FÉtU → FÉtU0 is essentially surjective.

Proof. The proof is identical to the proof of Lemma 24.1 using Lemma 23.2 in
stead of Lemma 23.1. □

25. Purity in local case, II

0BPB This section is the continuation of Section 20. Recall that we say purity holds for a
Noetherian local ring (A,m) if the restriction functor FÉtX → FÉtU is essentially
surjective where X = Spec(A) and U = X \ {m}.

Lemma 25.1.0DXZ Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
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(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in X0
has dimension ≥ 4, or

(b) if p ̸∈ V (f) and V (p) ∩ V (f) ̸= {m}, then depth(Ap) + dim(A/p) > 3.
(3) for every maximal ideal p ⊂ Af purity holds for (Af )p, and
(4) purity holds for A.

Then purity holds for A/fA.

Proof. Denote X = Spec(A) and U = X \{m} the punctured spectrum. Similarly
we have X0 = Spec(A/fA) and U0 = X0 \ {m}. Let V0 → U0 be a finite étale
morphism. By Lemma 24.1 we find a finite étale morphism V → U whose base
change to U0 is isomorphic to V0 → U0. By assumption (5) we find that V → U
extends to a finite étale morphism Y → X. Then the restriction of Y to X0 is the
desired extension of V0 → U0. □

Lemma 25.2.0BPC Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules,

(4) for every maximal ideal p ⊂ Af purity holds for (Af )p,
(5) purity holds for A.

Then purity holds for A/fA.

Proof. The proof is identical to the proof of Lemma 25.1 using Lemma 24.2 in
stead of Lemma 24.1. □

Now we can bootstrap the earlier results to prove that purity holds for complete
intersections of dimension ≥ 3. Recall that a Noetherian local ring is called a
complete intersection if its completion is the quotient of a regular local ring by the
ideal generated by a regular sequence. See the discussion in Divided Power Algebra,
Section 8.

Proposition 25.3.0BPD Let (A,m) be a Noetherian local ring. If A is a complete
intersection of dimension ≥ 3, then purity holds for A in the sense that any finite
étale cover of the punctured spectrum extends.

Proof. By Lemma 20.4 we may assume that A is a complete local ring. By as-
sumption we can write A = B/(f1, . . . , fr) where B is a complete regular local ring
and f1, . . . , fr is a regular sequence. We will finish the proof by induction on r.
The base case is r = 0 which follows from Lemma 21.3 which applies to regular
rings of dimension ≥ 2.

Assume that A = B/(f1, . . . , fr) and that the proposition holds for r − 1. Set
A′ = B/(f1, . . . , fr−1) and apply Lemma 25.2 to fr ∈ A′. This is permissible:
condition (1) holds as f1, . . . , fr is a regular sequence, condition (2) holds as B and
hence A′ is complete, condition (3) holds as A = A′/frA

′ is Cohen-Macaulay of
dimension dim(A) ≥ 3, see Dualizing Complexes, Lemma 11.1, condition (4) holds
by induction hypothesis as dim((A′

fr
)p) ≥ 3 for a maximal prime p of A′

fr
and

as (A′
fr

)p = Bq/(f1, . . . , fr−1) for some q ⊂ B, condition (5) holds by induction
hypothesis. □
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26. Purity in local case, III

0EY8 In this section is a continuation of the discussion in Sections 20 and 25.

Lemma 26.1.0EY9 Let (A,m) be a Noetherian local ring of depth ≥ 2. Let B =
A[[x1, . . . , xd]] with d ≥ 1. Set Y = Spec(B) and Y0 = V (x1, . . . , xd). For any open
subscheme V ⊂ Y with V0 = V ∩ Y0 equal to Y0 \ {mB} the restriction functor

FÉtV −→ FÉtV0

is fully faithful.

Proof. Set I = (x1, . . . , xd). Set X = Spec(A). If we use the map Y → X to
identify Y0 with X, then V0 is identified with the punctured spectrum U of A.
Pushing forward modules by this affine morphism we get

limn Γ(V0,OV /InOV ) = limn Γ(V0,OY /InOY )
= limn Γ(U,OU [x1, . . . , xd]/(x1, . . . , xd)n)
= limnA[x1, . . . , xd]/(x1, . . . , xd)n

= B

Namely, as the depth of A is ≥ 2 we have Γ(U,OU ) = A, see Local Cohomology,
Lemma 8.2. Thus for any V ⊂ Y open as in the lemma we get

B = Γ(Y,OY )→ Γ(V,OV )→ limn Γ(V0,OY /InOY ) = B

which implies both arrows are isomorphisms (small detail omitted). By Algebraic
and Formal Geometry, Lemma 15.1 we conclude that Coh(OV ) → Coh(V, IOV ) is
fully faithful on the full subcategory of finite locally free objects. Thus we conclude
by Lemma 17.1. □

Lemma 26.2.0EYA Let (A,m) be a Noetherian local ring of depth ≥ 2. Let B =
A[[x1, . . . , xd]] with d ≥ 1. For any open V ⊂ Y = Spec(B) which contains

(1) any prime q ⊂ B such that q ∩A ̸= m,
(2) the prime mB

the functor FÉtY → FÉtV is an equivalence. In particular purity holds for B.

Proof. A prime q ⊂ B which is not contained in V lies over m. In this case A→ Bq

is a flat local homomorphism and hence depth(Bq) ≥ 2 (Algebra, Lemma 163.2).
Thus the functor is fully faithful by Lemma 10.3 combined with Local Cohomology,
Lemma 3.1.
Let W → V be a finite étale morphism. Let B → C be the unique finite ring map
such that Spec(C) → Y is the finite morphism extending W → V constructed in
Lemma 21.5. Observe that C = Γ(W,OW ).
Set Y0 = V (x1, . . . , xd) and V0 = V ∩ Y0. Set X = Spec(A). If we use the map
Y → X to identify Y0 with X, then V0 is identified with the punctured spectrum
U of A. Thus we may view W0 = W ×Y Y0 as a finite étale scheme over U . Then

W0 ×U (U ×X Y ) and W ×V (U ×X Y )
are schemes finite étale over U×XY which restrict to isomorphic finite étale schemes
over V0. By Lemma 26.1 applied to the open U ×X Y we obtain an isomorphism

W0 ×U (U ×X Y ) −→W ×V (U ×X Y )
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over U ×X Y .
Observe that C0 = Γ(W0,OW0) is a finite A-algebra by Lemma 21.5 applied to
W0 → U ⊂ X (exactly as we did for B → C above). Since the construction in
Lemma 21.5 is compatible with flat base change and with change of opens, the
isomorphism above induces an isomorphism

Ψ : C −→ C0 ⊗A B
of finite B-algebras. However, we know that Spec(C) → Y is étale at all points
above at least one point of Y lying over m ∈ X. Since Ψ is an isomorphism, we
conclude that Spec(C0) → X is étale above m (small detail omitted). Of course
this means that A→ C0 is finite étale and hence B → C is finite étale. □

Lemma 26.3.0EYB Let f : X → S be a morphism of schemes. Let U ⊂ X be an open
subscheme. Assume

(1) f is smooth,
(2) S is Noetherian,
(3) for s ∈ S with depth(OS,s) ≤ 1 we have Xs = Us,
(4) Us ⊂ Xs is dense for all s ∈ S.

Then FÉtX → FÉtU is an equivalence.

Proof. The functor is fully faithful by Lemma 10.3 combined with Local Cohomol-
ogy, Lemma 3.1 (plus an application of Algebra, Lemma 163.2 to check the depth
condition).
Let π : V → U be a finite étale morphism. Let Y → X be the finite morphism
constructed in Lemma 21.5. We have to show that Y → X is finite étale. To show
that this is true for all points x ∈ X mapping to a given point s ∈ S we may
perform a base change by a flat morphism S′ → S of Noetherian schemes such that
s is in the image. This follows from the compatibility of the construction in Lemma
21.5 with flat base change.
After enlarging U we may assume U ⊂ X is the maximal open over which Y → X
is finite étale. Let Z ⊂ X be the complement of U . To get a contradiction, assume
Z ̸= ∅. Let s ∈ S be a point in the image of Z → S such that no strict generalization
of s is in the image. Then after base change to Spec(OS,s) we see that S = Spec(A)
with (A,m, κ) a local Noetherian ring of depth ≥ 2 and Z contained in the closed
fibre Xs and nowhere dense in Xs. Choose a closed point z ∈ Z. Then κ(z)/κ is
finite (by the Hilbert Nullstellensatz, see Algebra, Theorem 34.1). Choose a finite
flat morphism (S′, s′)→ (S, s) of local schemes realizing the residue field extension
κ(z)/κ, see Algebra, Lemma 159.3. After doing a base change by S′ → S we reduce
to the case where κ(z) = κ.
By More on Morphisms, Lemma 38.5 there exists a locally closed subscheme S′ ⊂ X
passing through z such that S′ → S is étale at z. After performing the base change
by S′ → S, we may assume there is a section σ : S → X such that σ(s) = z.
Choose an affine neighbourhood Spec(B) ⊂ X of s. Then A→ B is a smooth ring
map which has a section σ : B → A. Denote I = Ker(σ) and denote B∧ the I-adic
completion of B. Then B∧ ∼= A[[x1, . . . , xd]] for some d ≥ 0, see Algebra, Lemma
139.4. Observe that d > 0 since otherwise we see that X → S is étale at z which
would imply that z is a generic point of Xs and hence z ∈ U by assumption (4).
Similarly, if d > 0, then mB∧ maps into U via the morphism Spec(B∧) → X. It

https://stacks.math.columbia.edu/tag/0EYB


FUNDAMENTAL GROUPS OF SCHEMES 62

suffices prove Y → X is finite étale after base change to Spec(B∧). Since B → B∧

is flat (Algebra, Lemma 97.2) this follows from Lemma 26.2 and the uniqueness in
the construction of Y → X. □

Proposition 26.4.0EYC Let A→ B be a local homomorphism of local Noetherian rings.
Assume A has depth ≥ 2, A→ B is formally smooth for the mB-adic topology, and
dim(B) > dim(A). For any open V ⊂ Y = Spec(B) which contains

(1) any prime q ⊂ B such that q ∩A ̸= mA,
(2) the prime mAB

the functor FÉtY → FÉtV is an equivalence. In particular purity holds for B.

Proof. A prime q ⊂ B which is not contained in V lies over mA. In this case
A→ Bq is a flat local homomorphism and hence depth(Bq) ≥ 2 (Algebra, Lemma
163.2). Thus the functor is fully faithful by Lemma 10.3 combined with Local
Cohomology, Lemma 3.1.

Denote A∧ and B∧ the completions of A and B with respect to their maximal ideals.
Observe that the assumptions of the proposition hold for A∧ → B∧, see More on
Algebra, Lemmas 43.1, 43.2, and 37.4. By the uniqueness and compatibility with
flat base change of the construction of Lemma 21.5 it suffices to prove the essential
surjectivity for A∧ → B∧ and the inverse image of V (details omitted; compare
with Lemma 20.4 for the case where V is the punctured spectrum). By More on
Algebra, Proposition 49.2 this means we may assume A→ B is regular.

Let W → V be a finite étale morphism. By Popescu’s theorem (Smoothing Ring
Maps, Theorem 12.1) we can write B = colimBi as a filtered colimit of smooth
A-algebras. We can pick an i and an open Vi ⊂ Spec(Bi) whose inverse image is
V (Limits, Lemma 4.11). After increasing i we may assume there is a finite étale
morphism Wi → Vi whose base change to V is W → V , see Limits, Lemmas 10.1,
8.3, and 8.10. We may assume the complement of Vi is contained in the closed fibre
of Spec(Bi) → Spec(A) as this is true for V (either choose Vi this way or use the
lemma above to show this is true for i large enough). Let η be the generic point
of the closed fibre of Spec(B) → Spec(A). Since η ∈ V , the image of η is in Vi.
Hence after replacing Vi by an affine open neighbourhood of the image of the closed
point of Spec(B), we may assume that the closed fibre of Spec(Bi) → Spec(A) is
irreducible and that its generic point is contained in Vi (details omitted; use that a
scheme smooth over a field is a disjoint union of irreducible schemes). At this point
we may apply Lemma 26.3 to see that Wi → Vi extends to a finite étale morphism
Spec(Ci) → Spec(Bi) and pulling back to Spec(B) we conclude that W is in the
essential image of the functor FÉtY → FÉtV as desired. □

27. Lefschetz for the fundamental group

0ELB Of course we have already proven a bunch of results of this type in the local case.
In this section we discuss the projective case.

Proposition 27.1.0ELC Let k be a field. Let X be a proper scheme over k. Let L be
an ample invertible OX-module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme
of s. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 1

https://stacks.math.columbia.edu/tag/0EYC
https://stacks.math.columbia.edu/tag/0ELC


FUNDAMENTAL GROUPS OF SCHEMES 63

Then the restriction functor FÉtX → FÉtY is fully faithful. In fact, for any open
subscheme V ⊂ X containing Y the restriction functor FÉtV → FÉtY is fully
faithful.

Proof. The first statement is a formal consequence of Lemma 17.6 and Algebraic
and Formal Geometry, Proposition 28.1. The second statement follows from Lemma
17.6 and Algebraic and Formal Geometry, Lemma 28.2. □

Proposition 27.2.0ELD Let k be a field. Let X be a proper scheme over k. Let L be
an ample invertible OX-module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme
of s. Let V be the set of open subschemes of X containing Y ordered by reverse
inclusion. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2

Then the restriction functor

colimV FÉtV → FÉtY
is an equivalence.

Proof. This is a formal consequence of Lemma 17.4 and Algebraic and Formal
Geometry, Proposition 28.7. □

Proposition 27.3.0ELE Let k be a field. Let X be a proper scheme over k. Let L be
an ample invertible OX-module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme
of s. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2

and that for x ∈ X \ Y closed purity holds for OX,x. Then the restriction functor
FÉtX → FÉtY is an equivalence. If X or equivalently Y is connected, then

π1(Y, y)→ π1(X, y)

is an isomorphism for any geometric point y of Y .

Proof. Fully faithfulness holds by Proposition 27.1. By Proposition 27.2 any object
of FÉtY is isomorphic to the fibre product U ×V Y for some finite étale morphism
U → V where V ⊂ X is an open subscheme containing Y . The complement
T = X \ V is5 a finite set of closed points of X \ Y . Say T = {x1, . . . , xn}. By
assumption we can find finite étale morphisms V ′

i → Spec(OX,xi) agreeing with
U → V over V ×X Spec(OX,xi). By Limits, Lemma 20.1 applied n times we see
that U → V extends to a finite étale morphism U ′ → X as desired. See Lemma
8.1 for the final statement. □

28. Purity of ramification locus

0EA1 In this section we discuss the analogue of purity of branch locus for generically
finite morphisms. Apparently, this result is due to Gabber. A special case is van
der Waerden’s purity theorem for the locus where a birational morphism from a
normal variety to a smooth variety is not an isomorphism.

5Namely, T is proper over k (being closed in X) and affine (being closed in the affine scheme
X \ Y , see Morphisms, Lemma 43.18) and hence finite over k (Morphisms, Lemma 44.11). Thus
T is a finite set of closed points.
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Lemma 28.1.0EA2 Let A be a Noetherian normal local domain of dimension 2. Assume
A is Nagata, has a dualizing module ωA, and has a resolution of singularities f :
X → Spec(A). Let ωX be as in Resolution of Surfaces, Remark 7.7. If ωX ∼= OX(E)
for some effective Cartier divisor E ⊂ X supported on the exceptional fibre, then
A defines a rational singularity. If f is a minimal resolution, then E = 0.

Proof. There is a trace map Rf∗ωX → ωA, see Duality for Schemes, Section
7. By Grauert-Riemenschneider (Resolution of Surfaces, Proposition 7.8) we have
R1f∗ωX = 0. Thus the trace map is a map f∗ωX → ωA. Then we can consider

OSpec(A) = f∗OX → f∗ωX → ωA

where the first map comes from the map OX → OX(E) = ωX which is assumed to
exist in the statement of the lemma. The composition is an isomorphism by Divi-
sors, Lemma 2.11 as it is an isomorphism over the punctured spectrum of A (by the
assumption in the lemma and the fact that f is an isomorphism over the punctured
spectrum) and A and ωA are A-modules of depth 2 (by Algebra, Lemma 157.4 and
Dualizing Complexes, Lemma 17.5). Hence f∗ωX → ωA is surjective whence an
isomorphism. Thus Rf∗ωX = ωA which by duality implies Rf∗OX = OSpec(A).
Whence H1(X,OX) = 0 which implies that A defines a rational singularity (see
discussion in Resolution of Surfaces, Section 8 in particular Lemmas 8.7 and 8.1).
If f is minimal, then E = 0 because the map f∗ωA → ωX is surjective by a re-
peated application of Resolution of Surfaces, Lemma 9.7 and ωA ∼= A as we’ve seen
above. □

Lemma 28.2.0EA3 Let f : X → Spec(A) be a finite type morphism. Let x ∈ X be a
point. Assume

(1) A is an excellent regular local ring,
(2) OX,x is normal of dimension 2,
(3) f is étale outside of {x}.

Then f is étale at x.

Proof. We first replace X by an affine open neighbourhood of x. Observe that
OX,x is an excellent local ring (More on Algebra, Lemma 52.2). Thus we can choose
a minimal resolution of singularities W → Spec(OX,x), see Resolution of Surfaces,
Theorem 14.5. After possibly replacing X by an affine open neighbourhood of x
we can find a proper morphism b : X ′ → X such that X ′ ×X Spec(OX,x) = W ,
see Limits, Lemma 20.1. After shrinking X further, we may assume X ′ is regular.
Namely, we know W is regular and X ′ is excellent and the regular locus of the
spectrum of an excellent ring is open. Since W → Spec(OX,x) is projective (as
a sequence of normalized blowing ups), we may assume after shrinking X that
b is projective (details omitted). Let U = X \ {x}. Since W → Spec(OX,x) is
an isomorphism over the punctured spectrum, we may assume b : X ′ → X is an
isomorphism over U . Thus we may and will think of U as an open subscheme of
X ′ as well. Set f ′ = f ◦ b : X ′ → Spec(A).

Since A is regular we see that OY is a dualizing complex for Y . Hence f !OY
is a dualzing complex on X (Duality for Schemes, Lemma 17.7). The Cohen-
Macaulay locus of X is open by Duality for Schemes, Lemma 23.1 (this can also be
proven using excellency). Since OX,x is Cohen-Macaulay, after shrinking X we may
assume X is Cohen-Macaulay. Observe that an étale morphism is a local complete

https://stacks.math.columbia.edu/tag/0EA2
https://stacks.math.columbia.edu/tag/0EA3


FUNDAMENTAL GROUPS OF SCHEMES 65

intersection. Thus Duality for Schemes, Lemma 29.3 applies with r = 0 and we get
a map

OX −→ ωX/Y = H0(f !OY )

which is an isomorphism over X \ {x}. Since ωX/Y is (S2) by Duality for Schemes,
Lemma 21.5 we find this map is an isomorphism by Divisors, Lemma 2.11. This
already shows that X and in particular OX,x is Gorenstein.

Set ωX′/Y = H0((f ′)!OY ). Arguing in exactly the same manner as above we
find that (f ′)!OY = ωX′/Y [0] is a dualizing complex for X ′. Since X ′ is regular
the morphism X ′ → Y is a local complete intersection morphism, see More on
Morphisms, Lemma 62.11. By Duality for Schemes, Lemma 29.2 there exists a
map

OX′ −→ ωX′/Y

which is an isomorphism over U . We conclude ωX′/Y = OX′(E) for some effective
Cartier divisor E ⊂ X ′ disjoint from U .

Since ωX/Y = OY we see that ωX′/Y = b!f !OY = b!OX . Returning to W →
Spec(OX,x) we see that ωW = OW (E|W ). By Lemma 28.1 we find E|W = 0.
This means that f ′ : X ′ → Y is étale by (the already used) Duality for Schemes,
Lemma 29.2. This immediately finishes the proof, as étaleness of f ′ forces b to be
an isomorphism. □

Lemma 28.3 (Purity of ramification locus).0EA4 This result for
complex spaces can
be found on page
170 of [Fis76]. In
general this is
[Zon14, Theorem
2.4] attributed to
Gabber.

Let f : X → Y be a morphism of
locally Noetherian schemes. Let x ∈ X and set y = f(x). Assume

(1) OX,x is normal of dimension ≥ 1,
(2) OY,y is regular,
(3) f is locally of finite type, and
(4) for specializations x′ ⇝ x with dim(OX,x′) = 1 our f is étale at x′.

Then f is étale at x.

Proof. We will prove the lemma by induction on d = dim(OX,x).

An uninteresting case is d = 1 since in that case the morphism f is étale at x by
assumption. Assume d ≥ 2.

We can base change by Spec(OY,y) → Y without affecting the conclusion of the
lemma, see Morphisms, Lemma 36.17. Thus we may assume Y = Spec(A) where
A is a regular local ring and y corresponds to the maximal ideal m of A.

Let x′ ⇝ x be a specialization with x′ ̸= x. Then OX,x′ is normal as a localization
of OX,x. If x′ is not a generic point of X, then 1 ≤ dim(OX,x′) < d and we conclude
that f is étale at x′ by induction hypothesis. Thus we may assume that f is étale
at all points specializing to x. Since the set of points where f is étale is open in X
(by definition) we may after replacing X by an open neighbourhood of x assume
that f is étale away from {x}. In particular, we see that f is étale except at points
lying over the closed point y ∈ Y = Spec(A).

Let X ′ = X ×Spec(A) Spec(A∧). Let x′ ∈ X ′ be the unique point lying over x. By
the above we see that X ′ is étale over Spec(A∧) away from the closed fibre and
hence X ′ is normal away from the closed fibre. Since X is normal we conclude that
X ′ is normal by Resolution of Surfaces, Lemma 11.6. Then if we can show X ′ →
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Spec(A∧) is étale at x′, then f is étale at x (by the aforementioned Morphisms,
Lemma 36.17). Thus we may and do assume A is a regular complete local ring.
The case d = 2 now follows from Lemma 28.2.
Assume d > 2. Let t ∈ m, t ̸∈ m2. Set Y0 = Spec(A/tA) and X0 = X ×Y Y0. Then
X0 → Y0 is étale away from the fibre over the closed point. Since d > 2 we have
dim(OX0,x) = d− 1 is ≥ 2. The normalization X ′

0 → X0 is surjective and finite (as
we’re working over a complete local ring and such rings are Nagata). Let x′ ∈ X ′

0
be a point mapping to x. By induction hypothesis the morphism X ′

0 → Y is étale
at x′. From the inclusions κ(y) ⊂ κ(x) ⊂ κ(x′) we conclude that κ(x) is finite over
κ(y). Hence x is a closed point of the fibre of X → Y over y. But since x is also a
generic point of this fibre, we conclude that f is quasi-finite at x and we reduce to
the case of purity of branch locus, see Lemma 21.4. □

29. Affineness of complement of ramification locus

0ECA Let f : X → Y be a finite type morphism of Noetherian schemes with X normal
and Y regular. Let V ⊂ X be the maximal open subscheme where f is étale. The
discussion in [DG67, Chapter IV, Section 21.12] suggests that V → X might be
an affine morphism. Observe that if V → X is affine, then we deduce purity of
ramification locus (Lemma 28.3) by using Divisors, Lemma 16.4. Thus affineness
of V → X is a “strong” form of purity for the ramification locus. In this section
we prove V → X is affine when X and Y are equicharacteristic and excellent, see
Theorem 29.3. It seems reasonable to guess the result remains true for X and Y of
mixed characteristic (but still excellent).

Lemma 29.1.0ECB Let (A,m) be a regular local ring which contains a field. Let f :
V → Spec(A) be étale and quasi-compact. Assume that m ̸∈ f(V ) and assume that
g : V → Spec(A) \ {m} is affine. Then Hi(V,OV ), i > 0 is isomorphic to a direct
sum of copies of the injective hull of the residue field of A.

Proof. Denote U = Spec(A) \ {m} the punctured spectrum. Thus g : V → U is
affine. We have Hi(V,OV ) = Hi(U, g∗OV ) by Cohomology of Schemes, Lemma 2.4.
The OU -module g∗OV is quasi-coherent by Schemes, Lemma 24.1. For any quasi-
coherent OU -module F the cohomology Hi(U,F), i > 0 is m-power torsion, see for
example Local Cohomology, Lemma 2.2. In particular, the A-modules Hi(V,OV ),
i > 0 are m-power torsion. For any flat ring mapA→ A′ we haveHi(V,OV )⊗AA′ =
Hi(V ′,OV ′) where V ′ = V ×Spec(A) Spec(A′) by flat base change Cohomology of
Schemes, Lemma 5.2. If we take A′ to be the completion of A (flat by More on
Algebra, Section 43), then we see that

Hi(V,OV ) = Hi(V,OV )⊗A A′ = Hi(V ′,OV ′), for i > 0
The first equality by the torsion property we just proved and More on Algebra,
Lemma 89.3. Moreover, the injective hull of the residue field k is the same for A
and A′, see Dualizing Complexes, Lemma 7.4. In this way we reduce to the case
A = k[[x1, . . . , xd]], see Algebra, Section 160.
Assume the characteristic of k is p > 0. Since F : A → A, a 7→ ap is flat (Local
Cohomology, Lemma 17.6) and since V ×Spec(A),Spec(F ) Spec(A) ∼= V as schemes
over Spec(A) by Étale Morphisms, Lemma 14.3 the above gives Hi(V,OV )⊗A,FA ∼=
Hi(V,OV ). Thus we get the result by Local Cohomology, Lemma 18.2.
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Assume the characteristic of k is 0. By Local Cohomology, Lemma 19.3 there are
additive operators Dj , j = 1, . . . , d on Hi(V,OV ) satisfying the Leibniz rule with
respect to ∂j = ∂/∂xj . Thus we get the result by Local Cohomology, Lemma
18.1. □

Lemma 29.2.0ECC In the situation of Lemma 29.1 assume that Hi(V,OV ) = 0 for
i ≥ dim(A)− 1. Then V is affine.

Proof. Let k = A/m. Since V ×Spec(A) Spec(k) = ∅, by cohomology and base
change we have

RΓ(V,OV )⊗L
A k = 0

See Derived Categories of Schemes, Lemma 22.5. Thus there is a spectral sequence
(More on Algebra, Example 62.4)

Ep,q2 = Tor−p(k,Hq(V,OV )), dp,q2 : Ep,q2 → Ep+2,q−1
2

and dp,qr : Ep,qr → Ep+r,q−r+1
r converging to zero. By Lemma 29.1, Dualizing

Complexes, Lemma 21.9, and our assumption Hi(V,OV ) = 0 for i ≥ dim(A)−1 we
conclude that there is no nonzero differential entering or leaving the (p, q) = (0, 0)
spot. Thus H0(V,OV ) ⊗A k = 0. This means that if m = (x1, . . . , xd) then we
have an open covering V =

⋃
V ×Spec(A) Spec(Axi

) by affine open subschemes
V ×Spec(A) Spec(Axi

) (because V is affine over the punctured spectrum of A) such
that x1, . . . , xd generate the unit ideal in Γ(V,OV ). This implies V is affine by
Properties, Lemma 27.3. □

Theorem 29.3.0ECD Let Y be an excellent regular scheme over a field. Let f : X → Y
be a finite type morphism of schemes with X normal. Let V ⊂ X be the maximal
open subscheme where f is étale. Then the inclusion morphism V → X is affine.

Proof. Let x ∈ X with image y ∈ Y . It suffices to prove that V ∩W is affine
for some affine open neighbourhood W of x. Since Spec(OX,x) is the limit of the
schemes W , this holds if and only if

Vx = V ×X Spec(OX,x)
is affine (Limits, Lemma 4.13). Thus, if the theorem holds for the morphism X ×Y
Spec(OY,y) → Spec(OY,y), then the theorem holds. In particular, we may assume
Y is regular of finite dimension, which allows us to do induction on the dimension
d = dim(Y ). Combining this with the same argument again, we may assume that
Y is local with closed point y and that V ∩ (X \ f−1({y})→ X \ f−1({y}) is affine.
Let x ∈ X be a point lying over y. If x ∈ V , then there is nothing to prove. Observe
that f−1({y}) ∩ V is a finite set of closed points (the fibres of an étale morphism
are discrete). Thus after replacing X by an affine open neighbourhood of x we may
assume y ̸∈ f(V ). We have to prove that V is affine.
Let e(V ) be the maximum i with Hi(V,OV ) ̸= 0. As X is affine the integer e(V )
is the maximum of the numbers e(Vx) where x ∈ X \ V , see Local Cohomology,
Lemma 4.6 and the characterization of cohomological dimension in Local Cohomol-
ogy, Lemma 4.1. We have e(Vx) ≤ dim(OX,x) − 1 by Local Cohomology, Lemma
4.7. If dim(OX,x) ≥ 2 then purity of ramification locus (Lemma 28.3) shows that
Vx is strictly smaller than the punctured spectrum of OX,x. Since OX,x is normal
and excellent, this implies e(Vx) ≤ dim(OX,x)−2 by Hartshorne-Lichtenbaum van-
ishing (Local Cohomology, Lemma 16.7). On the other hand, since X → Y is of
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finite type and V ⊂ X is dense (after possibly replacing X by the closure of V ),
we see that dim(OX,x) ≤ d by the dimension formula (Morphisms, Lemma 52.1).
Whence e(V ) ≤ max(0, d − 2). Thus V is affine by Lemma 29.2 if d ≥ 2. If d = 1
or d = 0, then the punctured spectrum of OY,y is affine and hence V is affine. □

30. Specialization maps in the smooth proper case

0BUQ In this section we discuss the following result. Let f : X → S be a proper smooth
morphism of schemes. Let s ⇝ s′ be a specialization of points in S. Then the
specialization map

sp : π1(Xs) −→ π1(Xs′)
of Section 16 is surjective and

(1) if the characteristic of κ(s′) is zero, then it is an isomorphism, or
(2) if the characteristic of κ(s′) is p > 0, then it induces an isomorphism on

maximal prime-to-p quotients.

Lemma 30.1.0C0P Let f : X → S be a flat proper morphism with geometrically
connected fibres. Let s′ ⇝ s be a specialization. If Xs is geometrically reduced, then
the specialization map sp : π1(Xs′)→ π1(Xs) is surjective.

Proof. Since Xs is geometrically reduced, we may assume all fibres are geometri-
cally reduced after possibly shrinking S, see More on Morphisms, Lemma 26.7. Let
OS,s → A→ κ(s′) be as in the construction of the specialization map, see Section
16. Thus it suffices to show that

π1(Xs′)→ π1(XA)
is surjective. This follows from Proposition 15.2 and π1(Spec(A)) = {1}. □

Proposition 30.2.0C0Q Let f : X → S be a smooth proper morphism with geometri-
cally connected fibres. Let s′ ⇝ s be a specialization. If the characteristic to κ(s)
is zero, then the specialization map

sp : π1(Xs′)→ π1(Xs)
is an isomorphism.

Proof. The map is surjective by Lemma 30.1. Thus we have to show it is injective.
We may assume S is affine. Then S is a cofiltered limit of affine schemes of finite
type over Z. Hence we can assume X → S is the base change of X0 → S0 where S0
is the spectrum of a finite type Z-algebra and X0 → S0 is smooth and proper. See
Limits, Lemma 10.1, 8.9, and 13.1. By Lemma 16.1 we reduce to the case where
the base is Noetherian.
Applying Lemma 16.4 we reduce to the case where the base S is the spectrum of a
strictly henselian discrete valuation ring A and we are looking at the specialization
map over A. Let K be the fraction field of A. Choose an algebraic closure K
which corresponds to a geometric generic point η of Spec(A). For K/L/K finite
separable, let B ⊂ L be the integral closure of A in L. This is a discrete valuation
ring by More on Algebra, Remark 111.6.
Let X → Spec(A) be as in the previous paragraph. To show injectivity of the
specialization map it suffices to prove that every finite étale cover V of Xη is the
base change of a finite étale cover Y → X. Namely, then π1(Xη)→ π1(X) = π1(Xs)
is injective by Lemma 4.4.
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Given V we can first descend V to V ′ → XKsep by Lemma 14.2 and then to
V ′′ → XL by Lemma 14.1. Let Z → XB be the normalization of XB in V ′′.
Observe that Z is normal and that ZL = V ′′ as schemes over XL. Hence Z → XB

is finite étale over the generic fibre. The problem is that we do not know that
Z → XB is everywhere étale. Since X → Spec(A) has geometrically connected
smooth fibres, we see that the special fibre Xs is geometrically irreducible. Hence
the special fibre of XB → Spec(B) is irreducible; let ξB be its generic point. Let
ξ1, . . . , ξr be the points of Z mapping to ξB . Our first (and it will turn out only)
problem is now that the extensions

OXB ,ξB
⊂ OZ,ξi

of discrete valuation rings may be ramified. Let ei be the ramification index of
this extension. Note that since the characteristic of κ(s) is zero, the ramification is
tame!
To get rid of the ramification we are going to choose a further finite separable
extensionKsep/L′/L/K such that the ramification index e of the induced extensions
B′/B is divisible by ei. Consider the normalized base change Z ′ of Z with respect
to Spec(B′)→ Spec(B), see discussion in More on Morphisms, Section 65. Let ξi,j
be the points of Z ′ mapping to ξB′ and to ξi in Z. Then the local rings

OZ′,ξi,j

are localizations of the integral closure of OZ,ξi
in L′ ⊗L Fi where Fi is the frac-

tion field of OZ,ξi
; details omitted. Hence Abhyankar’s lemma (More on Algebra,

Lemma 114.4) tells us that
OXB′ ,ξB′ ⊂ OZ′,ξi,j

is unramified. We conclude that the morphism Z ′ → XB′ is étale away from
codimension 1. Hence by purity of branch locus (Lemma 21.4) we see that Z ′ → XB′

is finite étale!
However, since the residue field extension induced by A → B′ is trivial (as the
residue field of A is algebraically closed being separably closed of characteristic
zero) we conclude that Z ′ is the base change of a finite étale cover Y → X by
applying Lemma 9.1 twice (first to get Y over A, then to prove that the pullback
to B is isomorphic to Z ′). This finishes the proof. □

Let G be a profinite group. Let p be a prime number. The maximal prime-to-p
quotient is by definition

G′ = limU⊂G open, normal, index prime to pG/U

If X is a connected scheme and p is given, then the maximal prime-to-p quotient
of π1(X) is denoted π′

1(X).

Theorem 30.3.0C0R Let f : X → S be a smooth proper morphism with geometrically
connected fibres. Let s′ ⇝ s be a specialization. If the characteristic of κ(s) is p,
then the specialization map

sp : π1(Xs′)→ π1(Xs)
is surjective and induces an isomorphism

π′
1(Xs′) ∼= π′

1(Xs)
of the maximal prime-to-p quotients
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Proof. This is proved in exactly the same manner as Proposition 30.2 with the
following differences

(1) Given X/A we no longer show that the functor FÉtX → FÉtXη
is essentially

surjective. We show only that Galois objects whose Galois group has order
prime to p are in the essential image. This will be enough to conclude the
injectivity of π′

1(Xs′)→ π′
1(Xs) by exactly the same argument.

(2) The extensions OXB ,ξB
⊂ OZ,ξi are tamely ramified as the associated ex-

tension of fraction fields is Galois with group of order prime to p. See More
on Algebra, Lemma 112.2.

(3) The extension κB/κA is no longer necessarily trivial, but it is purely insep-
arable. Hence the morphism XκB

→ XκA
is a universal homeomorphism

and induces an isomorphism of fundamental groups by Proposition 8.4.
□

31. Tame ramification

0BSE Let X → Y be a finite étale morphism of schemes of finite type over Z. There are
many ways to define what it means for f to be tamely ramified at ∞. The article
[KS10] discusses to what extent these notions agree.
In this section we discuss a different more elementary question which precedes
the notion of tameness at infinity. Please compare with the (slightly different)
discussion in [GM71]. Assume we are given

(1) a locally Noetherian scheme X,
(2) a dense open U ⊂ X,
(3) a finite étale morphism f : Y → U

such that for every prime divisor Z ⊂ X with Z ∩ U = ∅ the local ring OX,ξ of
X at the generic point ξ of Z is a discrete valuation ring. Setting Kξ equal to the
fraction field of OX,ξ we obtain a cartesian square

Spec(Kξ) //

��

U

��
Spec(OX,ξ) // X

of schemes. In particular, we see that Y ×U Spec(Kξ) is the spectrum of a finite
separable algebra Lξ/Kξ. Then we say Y is unramified over X in codimension 1,
resp. Y is tamely ramified over X in codimension 1 if Lξ/Kξ is unramified, resp.
tamely ramified with respect to OX,ξ for every (Z, ξ) as above, see More on Algebra,
Definition 111.7. More precisely, we decompose Lξ into a product of finite separable
field extensions of Kξ and we require each of these to be unramified, resp. tamely
ramified with respect to OX,ξ.

Lemma 31.1.0EYD Let X ′ → X be a morphism of locally Noetherian schemes. Let
U ⊂ X be a dense open. Assume

(1) U ′ = f−1(U) is dense open in X ′,
(2) for every prime divisor Z ⊂ X with Z ∩ U = ∅ the local ring OX,ξ of X at

the generic point ξ of Z is a discrete valuation ring,
(3) for every prime divisor Z ′ ⊂ X ′ with Z ′ ∩ U ′ = ∅ the local ring OX′,ξ′ of

X ′ at the generic point ξ′ of Z ′ is a discrete valuation ring,
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(4) if ξ′ ∈ X ′ is as in (3), then ξ = f(ξ′) is as in (2).
Then if f : Y → U is finite étale and Y is unramified, resp. tamely ramified over
X in codimension 1, then Y ′ = Y ×X X ′ → U ′ is finite étale and Y ′ is unramified,
resp. tamely ramified over X ′ in codimension 1.

Proof. The only interesting fact in this lemma is the commutative algebra result
given in More on Algebra, Lemma 114.9. □

Using the terminology introduced above, we can reformulate our purity results
obtained earlier in the following pleasing manner.

Lemma 31.2.0H2W Let X be a locally Noetherian scheme. Let U ⊂ X be open and
dense. Let Y → U be a finite étale morphism. Assume

(1) Y is unramified over X in codimension 1, and
(2) OX,x is regular for all x ∈ X \ U .

Then there exists a finite étale morphism Y ′ → X whose restriction to X \D is Y .

Proof. Let ξ ∈ X \ U be a generic point of an irreducible component of X \ U
of codimension 1. Then OX,ξ is a discrete valuation ring. As in the discussion
above, write Y ×U Spec(Kξ) = Spec(Lξ). Denote Bξ the integral closure of OX,ξ
in Lξ. Our assumption that Y is unramified over X in codimension 1 signifies
that OX,ξ → Bξ is finite étale. Thus we get Yξ → Spec(OX,ξ) finite étale and an
isomorphism

Y ×U Spec(Kξ) ∼= Yξ ×Spec(OX,ξ) Spec(Kξ)
over Spec(Kξ). By Limits, Lemma 20.3 we find an open subscheme U ⊂ U ′ ⊂ X
containing ξ and a morphism Y ′ → U ′ of finite presentation whose restriction to U
recovers Y and whose restriction to Spec(OX,ξ) recovers Yξ. Finally, the morphism
Y ′ → U ′ is finite étale after possible shrinking U ′ to a smaller open by Limits,
Lemma 20.4. Repeating the argument with the other generic points of X \ U of
codimension 1 we may assume that we have a finite étale morphism Y ′ → U ′

extending Y → U to an open subscheme containing U ′ ⊂ X containing U and all
codimension 1 points of X \ U . We finish by applying Lemma 21.6 to Y ′ → U ′.
Namely, all local rings OX,x for x ∈ X \ U ′ are regular and have dim(OX,x) ≥ 2.
Hence we have purity for OX,x by Lemma 21.3. □

Lemma 31.3.0EYE Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor such that D is a regular scheme. Let Y → X \D be a finite étale
morphism. If Y is unramified over X in codimension 1, then there exists a finite
étale morphism Y ′ → X whose restriction to X \D is Y .

Proof. This is a special case of Lemma 31.2. First, D is nowhere dense in X (see
discussion in Divisors, Section 13) and hence X \ D is dense in X. Second, the
ring OX,x is a regular local ring for all x ∈ D by Algebra, Lemma 106.7 and our
assumption that OD,x is regular. □

Example 31.4 (Standard tamely ramified morphism).0EYF Let A be a Noetherian
ring. Let f ∈ A be a nonzerodivisor such that A/fA is reduced. This implies that
Ap is a discrete valuation ring with uniformizer f for any minimal prime p over f .
Let e ≥ 1 be an integer which is invertible in A. Set

C = A[x]/(xe − f)
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Then Spec(C) → Spec(A) is a finite locally free morphism which is étale over the
spectrum of Af . The finite étale morphism

Spec(Cf ) −→ Spec(Af )

is tamely ramified over Spec(A) in codimension 1. The tameness follows immedi-
ately from the characterization of tamely ramified extensions in More on Algebra,
Lemma 114.7.

Here is a version of Abhyankar’s lemma for regular divisors.

Lemma 31.5 (Abhyankar’s lemma for regular divisor).0EYG Let X be a locally Noe-
therian scheme. Let D ⊂ X be an effective Cartier divisor such that D is a regular
scheme. Let Y → X \D be a finite étale morphism. If Y is tamely ramified over
X in codimension 1, then étale locally on X the morphism Y → X is as given
as a finite disjoint union of standard tamely ramified morphisms as described in
Example 31.4.

Proof. Before we start we note that OX,x is a regular local ring for all x ∈ D.
This follows from Algebra, Lemma 106.7 and our assumption that OD,x is regular.
Below we will also use that regular rings are normal, see Algebra, Lemma 157.5.

To prove the lemma we may work locally on X. Thus we may assume X = Spec(A)
and D ⊂ X is given by a nonzerodivisor f ∈ A. Then Y = Spec(B) as a finite étale
scheme over Af . Let p1, . . . , pr be the minimal primes of A over f . Then Ai = Api

is a discrete valuation ring; denote its fraction field Ki. By assumption

Ki ⊗Af
B =

∏
Lij

is a finite product of fields each tamely ramified with respect to Ai. Choose e ≥ 1
sufficiently divisible (namely, divisible by all ramification indices for Lij over Ai as
in More on Algebra, Remark 111.6). Warning: at this point we do not know that
e is invertible on A.

Consider the finite free A-algebra

A′ = A[x]/(xe − f)

Observe that f ′ = x is a nonzerodivisor in A′ and that A′/f ′A′ ∼= A/fA is a
regular ring. Set B′ = B ⊗A A′ = B ⊗Af

A′
f ′ . By Abhyankar’s lemma (More

on Algebra, Lemma 114.4) we see that Spec(B′) is unramified over Spec(A′) in
codimension 1. Namely, by Lemma 31.1 we see that Spec(B′) is still at least tamely
ramified over Spec(A′) in codimension 1. But Abhyankar’s lemma tells us that the
ramification indices have all become equal to 1. By Lemma 31.3 we conclude that
Spec(B′)→ Spec(A′

f ′) extends to a finite étale morphism Spec(C)→ Spec(A′).

For a point x ∈ D corresponding to p ∈ V (f) denote Ash a strict henselization of
Ap = OX,x. Observe that Ash and Ash/fAsh = (A/fA)sh (Algebra, Lemma 156.4)
are regular local rings, see More on Algebra, Lemma 45.10. Observe that A′ has a
unique prime p′ lying over p with identical residue field. Thus

(A′)sh = Ash ⊗A A′ = Ash[x]/(xe − f)

is a strictly henselian local ring finite over Ash (Algebra, Lemma 156.3). Since f ′

is a nonzerodivisor in (A′)sh and since (A′)sh/f ′(A′)sh = Ash/fAsh is regular, we
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conclude that (A′)sh is a regular local ring (see above). Observe that the induced
extension

Q(Ash) ⊂ Q((A′)sh) = Q(Ash)[x]/(xe − f)
of fraction fields has degree e (and not less). Since A′ → C is finite étale we see
that Ash ⊗A C is a finite product of copies of (A′)sh (Algebra, Lemma 153.6). We
have the inclusions

Ashf ⊂ Ash ⊗A B ⊂ Ash ⊗A B′ = Ash ⊗A Cf ′

and each of these rings is Noetherian and normal; this follows from Algebra, Lemma
163.9 for the ring in the middle. Taking total quotient rings, using the product
decomposition of Ash ⊗A C and using Fields, Lemma 24.3 we conclude that there
is an isomorphism

Q(Ash)⊗A B ∼=
∏

i∈I
Fi, Fi ∼= Q(Ash)[x]/(xei − f)

of Q(Ash)-algebras for some finite set I and integers ei|e. Since Ash ⊗A B is a
normal ring, it must be the integral closure of Ash in its total quotient ring. We
conclude that we have an isomorphism

Ash ⊗A B ∼=
∏

Ashf [x]/(xei − f)

over Ashf because the algebras Ash[x]/(xei − f) are regular and hence normal. The
discriminant of Ash[x]/(xei − f) over Ash is eei

i f
ei−1 (up to sign; calculation omit-

ted). Since Af → B is finite étale we see that ei must be invertible in Ashf . On
the other hand, since Af → B is tamely ramified over Spec(A) in codimension 1,
by Lemma 31.1 the ring map Ashf → Ash ⊗A B is tamely ramified over Spec(Ash)
in codimension 1. This implies ei is nonzero in Ash/fAsh (as it must map to an
invertible element of the fraction field of this domain by definition of tamely rami-
fied extensions). We conclude that V (ei) ⊂ Spec(Ash) has codimension ≥ 2 which
is absurd unless it is empty. In other words, ei is an invertible element of Ash. We
conclude that the pullback of Y to Spec(Ash) is indeed a finite disjoint union of
standard tamely ramified morphisms.

To finish the proof, we write Ash = colimAλ as a filtered colimit of étale A-algebras
Aλ. The isomorphism

Ash ⊗A B ∼=
∏

i∈I
Ashf [x]/(xei − f)

descends to an isomorphism

Aλ ⊗A B ∼=
∏

i∈I
(Aλ)f [x]/(xei − f)

for suitably large λ. After increasing λ a bit more we may assume ei is invertible
in Aλ. Then Spec(Aλ)→ Spec(A) is the desired étale neighbourhood of x and the
proof is complete. □

Lemma 31.6.0EYH In the situation of Lemma 31.5 the normalization of X in Y is a
finite locally free morphism π : Y ′ → X such that

(1) the restriction of Y ′ to X \D is isomorphic to Y ,
(2) D′ = π−1(D)red is an effective Cartier divisor on Y ′, and
(3) D′ is a regular scheme.
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Moreover, étale locally on X the morphism Y ′ → X is a finite disjoint union of
morphisms

Spec(A[x]/(xe − f))→ Spec(A)
where A is a Noetherian ring, f ∈ A is a nonzerodivisor with A/fA regular, and
e ≥ 1 is invertible in A.

Proof. This is just an addendum to Lemma 31.5 and in fact the truth of this lemma
follows almost immediately if you’ve read the proof of that lemma. But we can also
deduce the lemma from the result of Lemma 31.5. Namely, taking the normalization
of X in Y commutes with étale base change, see More on Morphisms, Lemma 19.2.
Hence we see that we may prove the statements on the local structure of Y ′ → X
étale locally on X. Thus, by Lemma 31.5 we may assume that X = Spec(A) where
A is a Noetherian ring, that we have a nonzerodivisor f ∈ A such that A/fA is
regular, and that Y is a finite disjoint union of spectra of rings Af [x]/(xe − f)
where e is invertible in A. We omit the verification that the integral closure of
A in Af [x]/(xe − f) is equal to A′ = A[x]/(xe − f). (To see this argue that the
localizations of A′ at primes lying over (f) are regular.) We omit the details. □

Lemma 31.7.0EYI In the situation of Lemma 31.5 let Y ′ → X be as in Lemma 31.6.
Let R be a discrete valuation ring with fraction field K. Let

t : Spec(R)→ X

be a morphism such that the scheme theoretic inverse image t−1D is the reduced
closed point of Spec(R).

(1) If t|Spec(K) lifts to a point of Y , then we get a lift t′ : Spec(R) → Y ′ such
that Y ′ → X is étale along t′(Spec(R)).

(2) If Spec(K) ×X Y is isomorphic to a disjoint union of copies of Spec(K),
then Y ′ → X is finite étale over an open neighbourhood of t(Spec(R)).

Proof. By the valuative criterion of properness applied to the finite morphism
Y ′ → X we see that Spec(K)-valued points of Y matching t|Spec(K) as maps into
X lift uniquely to morphisms t′ : Spec(R)→ Y ′. Thus statement (1) make sense.
Choose an étale neighbourhood (U, u) → (X, t(mR)) such that U = Spec(A) and
such that Y ′ ×X U → U has a description as in Lemma 31.6 for some f ∈ A.
Then Spec(R) ×X U → Spec(R) is étale and surjective. If R′ denotes the local
ring of Spec(R)×X U lying over the closed point of Spec(R), then R′ is a discrete
valuation ring and R ⊂ R′ is an unramified extension of discrete valuation rings
(More on Algebra, Lemma 44.4). The assumption on t signifies that the map
A→ R′ corresponding to

Spec(R′)→ Spec(R)×X U → U

maps f to a uniformizer π ∈ R′. Now suppose that

Y ′ ×X U =
∐

i∈I
Spec(A[x]/(xei − f))

for some ei ≥ 1. Then we see that

Spec(R′)×U (Y ′ ×X U) =
∐

i∈I
Spec(R′[x]/(xei − π))

The rings R′[x]/(xei − f) are discrete valuation rings (More on Algebra, Lemma
114.2) and hence have no map into the fraction field of R′ unless ei = 1.
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Proof of (1). In this case the map t′ : Spec(R) → Y ′ base changes to determine
a corresponding map t′′ : Spec(R′) → Y ′ ×X U which must map into a summand
corresponding to i ∈ I with ei = 1 by the discussion above. Thus clearly we see
that Y ′ ×X U → U is étale along the image of t′′. Since being étale is a property
one can check after étale base chamge, this proves (1).
Proof of (2). In this case the assumption implies that ei = 1 for all i ∈ I. Thus
Y ′ ×X U → U is finite étale and we conclude as before. □

Lemma 31.8.0EYJ Let S be an integral normal Noetherian scheme with generic point
η. Let f : X → S be a smooth morphism with geometrically connected fibres. Let
σ : S → X be a section of f . Let Z → Xη be a finite étale Galois cover (Section 7)
with group G of order invertible on S such that Z has a κ(η)-rational point mapping
to σ(η). Then there exists a finite étale Galois cover Y → X with group G whose
restriction to Xη is Z.

Proof. First assume S = Spec(R) is the spectrum of a discrete valuation ring R
with closed point s ∈ S. Then Xs is an effective Cartier divisor in X and Xs

is regular as a scheme smooth over a field. Moreover the generic fibre Xη is the
open subscheme X \Xs. It follows from More on Algebra, Lemma 112.2 and the
assumption on G that Z is tamely ramified over X in codimension 1. Let Z ′ → X
be as in Lemma 31.6. Observe that the action of G on Z extends to an action
of G on Z ′. By Lemma 31.7 we see that Z ′ → X is finite étale over an open
neighbourhood of σ(y). Since Xs is irreducible, this implies Z → Xη is unramified
over X in codimension 1. Then we get a finite étale morphism Y → X whose
restriction to Xη is Z by Lemma 31.3. Of course Y ∼= Z ′ (details omitted; hint:
compute étale locally) and hence Y is a Galois cover with group G.
General case. Let U ⊂ S be a maximal open subscheme such that there exists a
finite étale Galois cover Y → X ×S U with group G whose restriction to Xη is
isomorphic to Z. Assume U ̸= S to get a contradiction. Let s ∈ S \U be a generic
point of an irreducible component of S \ U . Then the inverse image Us of U in
Spec(OS,s) is the punctured spectrum of OS,s. We claim Y ×S Us → X ×S Us is
the restriction of a finite étale Galois cover Y ′

s → X ×S Spec(OS,s) with group G.
Let us first prove the claim produces the desired contradiction. By Limits, Lemma
20.3 we find an open subscheme U ⊂ U ′ ⊂ S containing s and a morphism Y ′′ → U ′

of finite presentation whose restriction to U recovers Y ′ → U and whose restriction
to Spec(OS,s) recovers Y ′

s . Moreover, by the equivalence of categories given in the
lemma, we may assume after shrinking U ′ there is a morphism Y ′′ → U ′×S X and
there is an action of G on Y ′′ over U ′ ×S X compatible with the given morphisms
and actions after base change to U and Spec(OS,s). After shrinking U ′ further if
necessary, we may assume Y ′′ → U ×S X is finite étale, see Limits, Lemma 20.4.
This means we have found a strictly larger open of S over which Y extends to a
finite étale Galois cover with group G which gives the contradiction we were looking
for.
Proof of the claim. We may and do replace S by Spec(OS,s). Then S = Spec(A)
where (A,m) is a local normal domain. Also U ⊂ S is the punctured spectrum and
we have a finite étale Galois cover Y → X ×S U with group G. If dim(A) = 1,
then we can construct the extension of Y to a Galois covering of X by the first
paragraph of the proof. Thus we may assume dim(A) ≥ 2 and hence depth(A) ≥ 2
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as S is normal, see Algebra, Lemma 157.4. Since X → S is flat, we conclude that
depth(OX,x) ≥ 2 for every point x ∈ X mapping to s, see Algebra, Lemma 163.2.
Let

Y ′ −→ X

be the finite morphism constructed in Lemma 21.5 using Y → X ×S U . Observe
that we obtain a canonical G-action on Y . Thus all that remains is to show that
Y ′ is étale over X. In fact, by Lemma 26.3 (for example) it even suffices to show
that Y ′ → X is étale over the (unique) generic point of the fibre Xs. This we do
by a local calculation in a (formal) neighbourhood of σ(s).
Choose an affine open Spec(B) ⊂ X containing σ(s). Then A → B is a smooth
ring map which has a section σ : B → A. Denote I = Ker(σ) and denote B∧ the
I-adic completion of B. Then B∧ ∼= A[[x1, . . . , xd]] for some d ≥ 0, see Algebra,
Lemma 139.4. Of course B → B∧ is flat (Algebra, Lemma 97.2) and the image of
Spec(B∧)→ X contains the generic point of Xs. Let V ⊂ Spec(B∧) be the inverse
image of U . Consider the finite étale morphism

W = Y ×(X×SU) V −→ V

By the compatibility of the construction of Y ′ with flat base change in Lemma 21.5
we find that the base chang Y ′×X Spec(B∧)→ Spec(B∧) is constructed from W →
V over Spec(B∧) by the procedure in Lemma 21.5. Set V0 = V ∩V (x1, . . . , xd) ⊂ V
and W0 = W ×V V0. This is a normal integral scheme which maps into σ(S) by
the morphism Spec(B∧) → X and in fact is identified with σ(U). Hence we know
that W0 → V0 = U completely decomposes as this is true for its generic fibre by
our assumption on Z → Xη having a κ(η)-rational point lying over σ(η) (and of
course the G-action then implies the whole fibre Zσ(η) is a disjoint union of copies
of the scheme η = Spec(κ(η))). Finally, by Lemma 26.1 we have

W0 ×U V ∼= W

This shows that W is a disjoint union of copies of V and hence Y ′ ×X Spec(B∧) is
a disjoint union of copies of Spec(B∧) and the proof is complete. □

Lemma 31.9.0EZJ Let S be a quasi-compact and quasi-separated integral normal
scheme with generic point η. Let f : X → S be a quasi-compact and quasi-separated
smooth morphism with geometrically connected fibres. Let σ : S → X be a section
of f . Let Z → Xη be a finite étale Galois cover (Section 7) with group G of order
invertible on S such that Z has a κ(η)-rational point mapping to σ(η). Then there
exists a finite étale Galois cover Y → X with group G whose restriction to Xη is
Z.

Proof. If S is Noetherian, then this is the result of Lemma 31.8. The general case
follows from this by a standard limit argument. We strongly urge the reader to
skip the proof.
We can write S = limSi as a directed limit of a system of schemes with affine
transition morphisms and with Si of finite type over Z, see Limits, Proposition 5.4.
For each i let S → S′

i → Si be the normalization of Si in S, see Morphisms, Section
53. Combining Algebra, Proposition 162.16 Morphisms, Lemmas 53.15 and 53.13
we conclude that S′

i is of finite type over Z, finite over Si, and that S′
i is an integral

normal scheme such that S → S′
i is dominant. By Morphisms, Lemma 53.5 we

obtain transition morphisms S′
i′ → S′

i compatible with the transition morphisms
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Si′ → Si and with the morphisms with source S. We claim that S = limS′
i. Proof

of claim omitted (hint: look on affine opens over a chosen affine open in Si for some
i to translate this into a straightforward algebra problem). We conclude that we
may write S = limSi as a directed limit of a system of normal integral schemes Si
with affine transition morphisms and with Si of finite type over Z.
For some i we can find a smooth morphism Xi → Si of finite presentation whose
base change to S is X → S. See Limits, Lemmas 10.1 and 8.9. After increasing
i we may assume the section σ lifts to a section σi : Si → Xi (by the equivalence
of categories in Limits, Lemma 10.1). We may replace Xi by the open subscheme
X0
i of it studied in More on Morphisms, Section 29 since the image of X → Xi

clearly maps into it (openness by More on Morphisms, Lemma 29.6). Thus we may
assume the fibres of Xi → Si are geometrically connected. After increasing i we
may assume |G| is invertible on Si. Let ηi ∈ Si be the generic point. Since Xη is the
limit of the schemes Xi,ηi

we can use the exact same arguments to descent Z → Xη

to some finite étale Galois cover Zi → Xi,ηi
after possibly increasing i. See Lemma

14.1. After possibly increasing i once more we may assume Zi has a κ(ηi)-rational
point mapping to σi(ηi). Then we apply the lemma in the Noetherian case and we
pullback to X to conclude. □

32. Tricks in positive characteristic

0G1E In Piotr Achinger’s paper [Ach17] it is shown that an affine scheme in positive char-
acteristic is always a K(π, 1). In this section we explain the more elementary parts
of [Ach17]. Namely, we show that for a field k of positive characteristic an affine
scheme étale over An

k is actually finite étale over An
k (by a different morphism). We

also show that a closed immersion of connected affine schemes in positive charac-
teristic induces an injective map on étale fundamental groups.
Let k be a field of characteristic p > 0. Let

k[x1, . . . , xn] −→ A

be a surjection of finite type k-algebras whose source is the polynomial algebra on
x1, . . . , xn. Denote I ⊂ k[x1, . . . , xn] the kernel so that we have A = k[x1, . . . , xn]/I.
We do not assume A is nonzero (in other words, we allow the case where A is the
zero ring and I = k[x1, . . . , xn]). Finally, we assume given a finite étale ring map
π : A→ B.
Suppose given k, n, k[x1, . . . , xn] → A, I, π : A → B. Let C be a k-algebra. Con-
sider commutative diagrams

B

C // C/φ(I)C

τ

OO

k[x1, . . . , xn]

φ

OO

// A

OO
π

cc

where φ is an étale k-algebra map and τ is a surjective k-algebra map. Let C,φ, τ
be given. For any r ≥ 0 and y1, . . . , yr ∈ C which generate C as an algebra over
Im(φ) let s = s(r, y1, . . . , yr) ∈ {0, . . . , r} be the maximal element such that yi is
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integral over Im(φ) for 1 ≤ i ≤ s. We define NF (C,φ, τ) to be the minimum value
of r − s = r − s(r, y1, . . . , yr) for all choices of r and y1, . . . , yr as above. Observe
that NF (C,φ, τ) is 0 if and only if φ is finite.

Lemma 32.1.0G1F In the situation above, if NF (C,φ, τ) > 0, then there exist an étale
k-algebra map φ′ and a surjective k-algebra map τ ′ fitting into the commutative
diagram

B

C // C/φ′(I)C

τ ′

OO

k[x1, . . . , xn]

φ′

OO

// A

OO
π

cc

with NF (C,φ′, τ ′) < NF (C,φ, τ).

Proof. Choose r ≥ 0 and y1, . . . , yr ∈ C which generate C over Im(φ) and let
0 ≤ s ≤ r be such that y1, . . . , ys are integral over Im(φ) such that r − s =
NF (C,φ, τ) > 0. Since B is finite over A, the image of ys+1 in B satisfies a monic
polynomial over A. Hence we can find d ≥ 1 and f1, . . . , fd ∈ k[x1, . . . , xn] such
that

z = yds+1 + φ(f1)yd−1
s+1 + . . .+ φ(fd) ∈ J = Ker(C → C/φ(I)C τ−→ B)

Since φ : k[x1, . . . , xn] → C is étale, we can find a nonzero and nonconstant poly-
nomial g ∈ k[T1, . . . , Tn+1] such that

g(φ(x1), . . . , φ(xn), z) = 0 in C

To see this you can use for example that C ⊗φ,k[x1,...,xn] k(x1, . . . , xn) is a finite
product of finite separable field extensions of k(x1, . . . , xn) (see Algebra, Lemmas
143.4) and hence z satisfies a monic polynomial over k(x1, . . . , xn). Clearing de-
nominators we obtain g.
The existence of g and Algebra, Lemma 115.2 produce integers e1, e2, . . . , en ≥
1 such that z is integral over the subring C ′ of C generated by t1 = φ(x1) +
zpe1 , . . . , tn = φ(xn) + zpen . Of course, the elements φ(x1), . . . , φ(xn) are also
integral over C ′ as are the elements y1, . . . , ys. Finally, by our choice of z the
element ys+1 is integral over C ′ too.
Consider the ring map

φ′ : k[x1, . . . , xn] −→ C, xi 7−→ ti

with image C ′. Since d(φ(xi)) = d(ti) = d(φ′(xi)) in ΩC/k (and this is where we
use the characteristic of k is p > 0) we conclude that φ′ is étale because φ is étale,
see Algebra, Lemma 151.9. Observe that φ′(xi) − φ(xi) = ti − φ(xi) = zpei is in
the kernel J of the map C → C/φ(I)C → B by our choice of z as an element of J .
Hence for f ∈ I the element
φ′(f) = f(t1, . . . , tn) = f(φ(x1) + zpe1 , . . . , φ(xn) + zpen) = φ(f) + element of (z)
is in J as well. In other words, φ′(I)C ⊂ J and we obtain a surjection

τ ′ : C/φ′(I)C −→ C/J ∼= B

https://stacks.math.columbia.edu/tag/0G1F
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of algebras étale over A. Finally, the algebra C is generated by the elements
φ(x1), . . . , φ(xn), y1, . . . , yr over C ′ = Im(φ′) with φ(x1), . . . , φ(xn), y1, . . . , ys+1
integral over C ′ = Im(φ′). Hence NF (C,φ′, τ ′) < r − s = NF (C,φ, τ). This
finishes the proof. □

Lemma 32.2.0G1G Let k be a field of characteristic p > 0. Let X → An
k be an étale

morphism with X affine. Then there exists a finite étale morphism X → An
k .

Proof. Write X = Spec(C). Set A = 0 and denote I = k[x1, . . . , xn]. By as-
sumption there exists some étale k-algebra map φ : k[x1, . . . , xn] → C. Denote
τ : C/φ(I)C → 0 the unique surjection. We may choose φ and τ such that
N(C,φ, τ) is minimal. By Lemma 32.1 we get N(C,φ, τ) = 0. Hence φ is finite
étale. □

Lemma 32.3.0G1H Let k be a field of characteristic p > 0. Let Z ⊂ An
k be a closed

subscheme. Let Y → Z be finite étale. There exists a finite étale morphism f :
U → An

k such that there is an open and closed immersion Y → f−1(Z) over Z.

Proof. Let us turn the problem into algebra. Write An
k = Spec(k[x1, . . . , xn]).

Then Z = Spec(A) where A = k[x1, . . . , xn]/I for some ideal I ⊂ k[x1, . . . , xn].
Write Y = Spec(B) so that Y → Z corresponds to the finite étale k-algebra map
A→ B.

By Algebra, Lemma 143.10 there exists an étale ring map

φ : k[x1, . . . , xn]→ C

and a surjective A-algebra map τ : C/φ(I)C → B. (We can even choose C,φ, τ
such that τ is an isomorphism, but we won’t use this). We may choose φ and τ
such that N(C,φ, τ) is minimal. By Lemma 32.1 we get N(C,φ, τ) = 0. Hence φ
is finite étale.

Let f : U = Spec(C) → An
k be the finite étale morphism corresponding to φ. The

morphism Y → f−1(Z) = Spec(C/φ(I)C) induced by τ is a closed immersion as
τ is surjective and open as it is an étale morphism by Morphisms, Lemma 36.18.
This finishes the proof. □

Here is the main result.

Proposition 32.4.0G1I Let p be a prime number. Let i : Z → X be a closed immersion
of connected affine schemes over Fp. For any geometric point z of Z the map

π1(Z, z)→ π1(X, z)

is injective.

Proof. Let Y → Z be a finite étale morphism. It suffices to construct a finite étale
morphism f : U → X such that Y is isomorphic to an open and closed subscheme
of f−1(Z), see Lemma 4.4. Write Y = Spec(A) and X = Spec(R) so the closed
immersion Y → X is given by a surjection R→ A. We may write A = colimAi as
the filtered colimit of its Fp-subalgebras of finite type. By Lemma 14.1 we can find
an i and a finite étale morphism Yi → Zi = Spec(Ai) such that Y = Z ×Zi

Yi.

Choose a surjection Fp[x1, . . . , xn]→ Ai. This determines a closed immersion

Zi = Spec(Ai) −→ Xi = An
Fp

= Spec(Fp[x1, . . . , xn])

https://stacks.math.columbia.edu/tag/0G1G
https://stacks.math.columbia.edu/tag/0G1H
https://stacks.math.columbia.edu/tag/0G1I
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By the universal property of polynomial algebras and since R→ A is surjective, we
can find a commutative diagram

Fp[x1, . . . , xn] //

��

Ai

��
R // A

of Fp-algebras. Thus we have a commutative diagram

Yi // Zi // Xi

Y

OO

// Z

OO

// X

OO

whose right square is cartesian. Clearly, if we can find fi : Ui → Xi finite étale
such that Yi is isomorphic to an open and closed subscheme of f−1

i (Zi), then the
base change f : U → X of fi by X → Xi is a solution to our problem. Thus we
conclude by applying Lemma 32.3 to Yi → Zi → Xi = An

Fp
. □
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