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1. Introduction

04LB This chapter is devoted to advanced topics on groupoid schemes. Even though the
results are stated in terms of groupoid schemes, the reader should keep in mind the
2-cartesian diagram

(1.0.1)04LC

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 20.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

2. Notation

04LD We continue to abide by the conventions and notation introduced in Groupoids,
Section 2.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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3. Useful diagrams

04LE We briefly restate the results of Groupoids, Lemmas 13.4 and 13.5 for easy reference
in this chapter. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
In the commutative diagram

(3.0.1)04LF

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.
The diagram

(3.0.2)04LG

R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR

��

U

idU

��
R×s,U,t R

c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

4. Sheaf of differentials

04R8 The following lemma is the analogue of Groupoids, Lemma 6.3.

Lemma 4.1.04R9 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
The sheaf of differentials of R seen as a scheme over U via t is a quotient of the
pullback via t of the conormal sheaf of the immersion e : U → R. In a formula:
there is a canonical surjection t∗CU/R → ΩR/U . If s is flat, then this map is an
isomorphism.

Proof. Note that e : U → R is an immersion as it is a section of the morphism s,
see Schemes, Lemma 21.11. Consider the following diagram

R
(1,i)
//

t

��

R×s,U,t R

c

��

(pr0,i◦pr1)
// R×t,U,t R

U
e // R

The square on the left is cartesian, because if a ◦ b = e, then b = i(a). The com-
position of the horizontal maps is the diagonal morphism of t : R → U . The right
top horizontal arrow is an isomorphism. Hence since ΩR/U is the conormal sheaf
of the composition it is isomorphic to the conormal sheaf of (1, i). By Morphisms,
Lemma 31.4 we get the surjection t∗CU/R → ΩR/U and if c is flat, then this is an

https://stacks.math.columbia.edu/tag/04R9
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isomorphism. Since c is a base change of s by the properties of Diagram (3.0.2) we
conclude that if s is flat, then c is flat, see Morphisms, Lemma 25.8. □

5. Local structure

0CK3 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Let u ∈ U
be a point. In this section we explain what kind of structure we obtain on the local
rings

A = OU,u and B = OR,e(u)

The convention we will use is to denote the local ring homomorphisms induced
by the morphisms s, t, c, e, i by the corresponding letters. In particular we have a
commutative diagram

A

t ��

1

''
B

e // A

A

s

??

1

77

of local rings. Thus if I ⊂ B denotes the kernel of e : B → A, then B = s(A) ⊕ I =
t(A) ⊕ I. Let us denote

C = OR×s,U,tR,(e(u),e(u))

Then we have
C = (B ⊗s,A,t B)mB⊗B+B⊗mB

Let J ⊂ C be the ideal of C generated by I ⊗B+B⊗ I. Then J is also the kernel
of the local ring homomorphism

(e, e) : C −→ A

The composition law c : R×s,U,t R → R corresponds to a ring map
c : B −→ C

sending I into J .

Lemma 5.1.0CK4 The map I/I2 → J/J2 induced by c is the composition

I/I2 (1,1)−−−→ I/I2 ⊕ I/I2 → J/J2

where the second arrow comes from the equality J = (I ⊗ B + B ⊗ I)C. The map
i : B → B induces the map −1 : I/I2 → I/I2.

Proof. To describe a local homomorphism from C to another local ring it is enough
to say what happens to elements of the form b1 ⊗ b2. Keeping this in mind we have
the two canonical maps

e2 : C → B, b1 ⊗ b2 7→ b1s(e(b2)), e1 : C → B, b1 ⊗ b2 7→ t(e(b1))b2

corresponding to the embeddings R → R ×s,U,t R given by r 7→ (r, e(s(r))) and
r 7→ (e(t(r)), r). These maps define maps J/J2 → I/I2 which jointly give an
inverse to the map I/I2 ⊕ I/I2 → J/J2 of the lemma. Thus to prove statement
we only have to show that e1 ◦ c : B → B and e2 ◦ c : B → B are the identity
maps. This follows from the fact that both compositions R → R×s,U,t R → R are
identities.

https://stacks.math.columbia.edu/tag/0CK4
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The statement on i follows from the statement on c and the fact that c◦(1, i) = e◦t.
Some details omitted. □

6. Properties of groupoids

02YD Let (U,R, s, t, c) be a groupoid scheme. The idea behind the results in this section
is that s : R → U is a base change of the morphism U → [U/R] (see Diagram
(1.0.1). Hence the local properties of s : R → U should reflect local properties
of the morphism U → [U/R]. This doesn’t work, because [U/R] is not always an
algebraic stack, and hence we cannot speak of geometric or algebraic properties
of U → [U/R]. But it turns out that we can make some of it work without even
referring to the quotient stack at all.
Here is a first example of such a result. The open W ⊂ U ′ found in the lemma is
roughly speaking the locus where the morphism U ′ → [U/R] has property P.

Lemma 6.1.04LH Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S. Let
g : U ′ → U be a morphism of schemes. Denote h the composition

h : U ′ ×g,U,t R pr1
// R

s
// U.

Let P,Q,R be properties of morphisms of schemes. Assume
(1) R ⇒ Q,
(2) Q is preserved under base change and composition,
(3) for any morphism f : X → Y which has Q there exists a largest open

W (P, f) ⊂ X such that f |W (P,f) has P, and
(4) for any morphism f : X → Y which has Q, and any morphism Y ′ → Y

which has R we have Y ′ ×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′ is
the base change of f .

If s, t have R and g has Q, then there exists an open subscheme W ⊂ U ′ such that
W ×g,U,t R = W (P, h).

Proof. Note that the following diagram is commutative

U ′ ×g,U,t R×t,U,t R pr12
//

pr02

��
pr01

��

R×t,U,t R

pr1

��
pr0

��
U ′ ×g,U,t R

pr1 // R

with both squares cartesian (this uses that the two maps t◦pri : R×t,U,tR → U are
equal). Combining this with the properties of diagram (3.0.2) we get a commutative
diagram

U ′ ×g,U,t R×t,U,t R
c◦(i,1)

//

pr02

��
pr01

��

R

s

��
t

��
U ′ ×g,U,t R

h // U

where both squares are cartesian.
Assume s, t have R and g has Q. Then h has Q as a composition of s (which has R
hence Q) and a base change of g (which has Q). Thus W (P, h) ⊂ U ′ ×g,U,tR exists.
By our assumptions we have pr−1

01 (W (P, h)) = pr−1
02 (W (P, h)) since both are the

largest open on which c ◦ (i, 1) has P. Note that the projection U ′ ×g,U,t R → U ′

https://stacks.math.columbia.edu/tag/04LH
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has a section, namely σ : U ′ → U ′ ×g,U,t R, u′ 7→ (u′, e(g(u′))). Also via the
isomorphism

(U ′ ×g,U,t R) ×U ′ (U ′ ×g,U,t R) = U ′ ×g,U,t R×t,U,t R

the two projections of the left hand side to U ′ ×g,U,t R agree with the morphisms
pr01 and pr02 on the right hand side. Since pr−1

01 (W (P, h)) = pr−1
02 (W (P, h)) we

conclude that W (P, h) is the inverse image of a subset of U , which is necessarily
the open set W = σ−1(W (P, h)). □

Remark 6.2.04LI Warning: Lemma 6.1 should be used with care. For example, it
applies to P =“flat”, Q =“empty”, and R =“flat and locally of finite presentation”.
But given a morphism of schemes f : X → Y the largest open W ⊂ X such that
f |W is flat is not the set of points where f is flat!
Remark 6.3.047W Notwithstanding the warning in Remark 6.2 there are some cases
where Lemma 6.1 can be used without causing too much ambiguity. We give a
list. In each case we omit the verification of assumptions (1) and (2) and we give
references which imply (3) and (4). Here is the list:

(1) Q = R =“locally of finite type”, and P =“relative dimension ≤ d”. See
Morphisms, Definition 29.1 and Morphisms, Lemmas 28.4 and 28.3.

(2) Q = R =“locally of finite type”, and P =“locally quasi-finite”. This is the
case d = 0 of the previous item, see Morphisms, Lemma 29.5.

(3) Q = R =“locally of finite type”, and P =“unramified”. See Morphisms,
Lemmas 35.3 and 35.15.

What is interesting about the cases listed above is that we do not need to assume
that s, t are flat to get a conclusion about the locus where the morphism h has
property P. We continue the list:

(4) Q =“locally of finite presentation”, R =“flat and locally of finite presenta-
tion”, and P =“flat”. See More on Morphisms, Theorem 15.1 and Lemma
15.2.

(5) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“Cohen-Macaulay”. See More on Morphisms, Definition
22.1 and More on Morphisms, Lemmas 22.6 and 22.7.

(6) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“syntomic” use Morphisms, Lemma 30.12 (the locus is
automatically open).

(7) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“smooth”. See Morphisms, Lemma 34.15 (the locus is
automatically open).

(8) Q =“locally of finite presentation”, R =“flat and locally of finite presen-
tation”, and P =“étale”. See Morphisms, Lemma 36.17 (the locus is auto-
matically open).

Here is the second result. The R-invariant open W ⊂ U should be thought of as
the inverse image of the largest open of [U/R] over which the morphism U → [U/R]
has property P.
Lemma 6.4.03JC Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
τ ∈ {Zariski, fppf, étale, smooth, syntomic}1. Let P be a property of morphisms

1The fact that fpqc is missing is not a typo.

https://stacks.math.columbia.edu/tag/04LI
https://stacks.math.columbia.edu/tag/047W
https://stacks.math.columbia.edu/tag/03JC
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of schemes which is τ -local on the target (Descent, Definition 22.1). Assume {s :
R → U} and {t : R → U} are coverings for the τ -topology. Let W ⊂ U be the
maximal open subscheme such that s|s−1(W ) : s−1(W ) → W has property P. Then
W is R-invariant, see Groupoids, Definition 19.1.

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 22.3. In Diagram (3.0.1) let W1 ⊂ R be the maximal open subscheme over
which the morphism pr1 : R ×s,U,t R → R has property P. It follows from the
aforementioned Descent, Lemma 22.3 and the assumption that {s : R → U} and
{t : R → U} are coverings for the τ -topology that t−1(W ) = W1 = s−1(W ) as
desired. □

Lemma 6.5.06QQ Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let G → U
be its stabilizer group scheme. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be
a property of morphisms which is τ -local on the target. Assume {s : R → U}
and {t : R → U} are coverings for the τ -topology. Let W ⊂ U be the maximal
open subscheme such that GW → W has property P. Then W is R-invariant (see
Groupoids, Definition 19.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 22.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)
is an isomorphism over R (where ◦ denotes composition in the groupoid). Hence
s−1(W ) = t−1(W ) by the properties of W proved in the aforementioned Descent,
Lemma 22.3. □

7. Comparing fibres

04LJ Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Diagram (3.0.1) gives us a way
to compare the fibres of the map s : R → U in a groupoid. For a point u ∈ U
we will denote Fu = s−1(u) the scheme theoretic fibre of s : R → U over u. For
example the diagram implies that if u, u′ ∈ U are points such that s(r) = u and
t(r) = u′, then (Fu)κ(r) ∼= (Fu′)κ(r). This is a special case of the more general and
more precise Lemma 7.1 below. To see this take r′ = i(r).
A pair (X,x) consisting of a scheme X and a point x ∈ X is sometimes called
the germ of X at x. A morphism of germs f : (X,x) → (S, s) is a morphism
f : U → S defined on an open neighbourhood of x with f(x) = s. Two such f , f ′

are said to give the same morphism of germs if and only if f and f ′ agree in some
open neighbourhood of x. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We
temporarily introduce the following concept: We say that two morphisms of germs
f : (X,x) → (S, s) and f ′ : (X ′, x′) → (S′, s′) are isomorphic locally on the base in
the τ -topology, if there exists a pointed scheme (S′′, s′′) and morphisms of germs
g : (S′′, s′′) → (S, s), and g′ : (S′′, s′′) → (S′, s′) such that

(1) g and g′ are an open immersion (resp. étale, smooth, syntomic, flat and
locally of finite presentation) at s′′,

(2) there exists an isomorphism
(S′′ ×g,S,f X, x̃) ∼= (S′′ ×g′,S′,f ′ X ′, x̃′)

of germs over the germ (S′′, s′′) for some choice of points x̃ and x̃′ lying
over (s′′, x) and (s′′, x′).

https://stacks.math.columbia.edu/tag/06QQ
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Finally, we simply say that the maps of germs f : (X,x) → (S, s) and f ′ : (X ′, x′) →
(S′, s′) are flat locally on the base isomorphic if there exist S′′, s′′, g, g′ as above but
with (1) replaced by the condition that g and g′ are flat at s′′ (this is much weaker
than any of the τ conditions above as a flat morphism need not be open).

Lemma 7.1.02YF Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let
r, r′ ∈ R with t(r) = t(r′) in U . Set u = s(r), u′ = s(r′). Denote Fu = s−1(u) and
Fu′ = s−1(u′) the scheme theoretic fibres.

(1) There exists a common field extension κ(u) ⊂ k, κ(u′) ⊂ k and an isomor-
phism (Fu)k

∼= (Fu′)k.
(2) We may choose the isomorphism of (1) such that a point lying over r maps

to a point lying over r′.
(3) If the morphisms s, t are flat then the morphisms of germs s : (R, r) →

(U, u) and s : (R, r′) → (U, u′) are flat locally on the base isomorphic.
(4) If the morphisms s, t are étale (resp. smooth, syntomic, or flat and locally

of finite presentation) then the morphisms of germs s : (R, r) → (U, u) and
s : (R, r′) → (U, u′) are locally on the base isomorphic in the étale (resp.
smooth, syntomic, or fppf) topology.

Proof. We repeatedly use the properties and the existence of diagram (3.0.1). By
the properties of the diagram (and Schemes, Lemma 17.5) there exists a point ξ of
R×s,U,t R with pr0(ξ) = r and c(ξ) = r′. Let r̃ = pr1(ξ) ∈ R.
Proof of (1). Set k = κ(r̃). Since t(r̃) = u and s(r̃) = u′ we see that k is a
common extension of both κ(u) and κ(u′) and in fact that both (Fu)k and (Fu′)k

are isomorphic to the fibre of pr1 : R×s,U,t R → R over r̃. Hence (1) is proved.
Part (2) follows since the point ξ maps to r, resp. r′.
Part (3) is clear from the above (using the point ξ for ũ and ũ′) and the definitions.
If s and t are flat and of finite presentation, then they are open morphisms (Mor-
phisms, Lemma 25.10). Hence the image of some affine open neighbourhood V ′′ of
r̃ will cover an open neighbourhood V of u, resp. V ′ of u′. These can be used to
show that properties (1) and (2) of the definition of “locally on the base isomorphic
in the τ -topology”. □

8. Cohen-Macaulay presentations

04LK Given any groupoid (U,R, s, t, c) with s, t flat and locally of finite presentation
there exists an “equivalent” groupoid (U ′, R′, s′, t′, c′) such that s′ and t′ are Cohen-
Macaulay morphisms (and locally of finite presentation). See More on Morphisms,
Section 22 for more information on Cohen-Macaulay morphisms. Here “equivalent”
can be taken to mean that the quotient stacks [U/R] and [U ′/R′] are equivalent
stacks, see Groupoids in Spaces, Section 20 and Section 25.

Lemma 8.1.0460 Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Assume
s and t are flat and locally of finite presentation. Then there exists an open U ′ ⊂ U
such that

(1) t−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism s
is Cohen-Macaulay,

(2) s−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism t
is Cohen-Macaulay,

https://stacks.math.columbia.edu/tag/02YF
https://stacks.math.columbia.edu/tag/0460
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(3) the morphism t|s−1(U ′) : s−1(U ′) → U is surjective,
(4) the morphism s|t−1(U ′) : t−1(U ′) → U is surjective, and
(5) the restriction R′ = s−1(U ′) ∩ t−1(U ′) of R to U ′ defines a groupoid

(U ′, R′, s′, t′, c′) which has the property that the morphisms s′ and t′ are
Cohen-Macaulay and locally of finite presentation.

Proof. Apply Lemma 6.1 with g = id and Q =“locally of finite presentation”,
R =“flat and locally of finite presentation”, and P =“Cohen-Macaulay”, see Re-
mark 6.3. This gives us an open U ′ ⊂ U such that Let t−1(U ′) ⊂ R is the largest
open subscheme of R on which the morphism s is Cohen-Macaulay. This proves
(1). Let i : R → R be the inverse of the groupoid. Since i is an isomorphism, and
s ◦ i = t and t ◦ i = s we see that s−1(U ′) is also the largest open of R on which
t is Cohen-Macaulay. This proves (2). By More on Morphisms, Lemma 22.7 the
open subset t−1(U ′) is dense in every fibre of s : R → U . This proves (3). Same
argument for (4). Part (5) is a formal consequence of (1) and (2) and the discussion
of restrictions in Groupoids, Section 18. □

9. Restricting groupoids

04MM In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(9.0.1)04MN

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

of a restriction. See Groupoids, Lemma 18.1.

Lemma 9.1.04MP Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and
arbitrary base change, see Morphisms, Lemmas 15.3 and 15.4. Hence (1) is clear
from Diagram (9.0.1). For the other cases, see Morphisms, Lemmas 21.3, 21.4, 25.6,
and 25.8. □

The following lemma could have been used to prove the results of the preceding
lemma in a more uniform way.

https://stacks.math.columbia.edu/tag/04MP
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Lemma 9.2.04MV Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction
of (U,R, s, t, c) via g, and let h = s ◦ pr1 : U ′ ×g,U,t R → U . If P is a property of
morphisms of schemes such that

(1) h has property P, and
(2) P is preserved under base change,

then s′, t′ have property P.

Proof. This is clear as s′ is the base change of h by Diagram (9.0.1) and t′ is
isomorphic to s′ as a morphism of schemes. □

Lemma 9.3.04MW Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g ◦ g′. Let
(U ′, R′, s′, t′, c′) be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U , let
h′ = s′ ◦ pr1 : U ′′ ×g′,U ′,t R → U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R → U . The
following diagram is commutative

U ′′ ×g′,U ′,t R
′

h′

��

(U ′ ×g,U,t R) ×U (U ′′ ×g′′,U,t R)oo //

��

U ′′ ×g′′,U,t R

h′′

��
U ′ U ′ ×g,U,t R

pr0oo h // U

with both squares cartesian where the left upper horizontal arrow is given by the
rule

(U ′ ×g,U,t R) ×U (U ′′ ×g′′,U,t R) −→ U ′′ ×g′,U ′,t R
′

((u′, r0), (u′′, r1)) 7−→ (u′′, (c(r1, i(r0)), (g′(u′′), u′)))
with notation as explained in the proof.

Proof. We work this out by exploiting the functorial point of view and reducing the
lemma to a statement on arrows in restrictions of a groupoid category. In the last
formula of the lemma the notation ((u′, r0), (u′′, r1)) indicates a T -valued point of
(U ′ ×g,U,tR)×U (U ′′ ×g′′,U,tR). This means that u′, u′′, r0, r1 are T -valued points of
U ′, U ′′, R,R and that g(u′) = t(r0), g(g′(u′′)) = g′′(u′′) = t(r1), and s(r0) = s(r1).
It would be more correct here to write g ◦ u′ = t ◦ r0 and so on but this makes the
notation even more unreadable. If we think of r1 and r0 as arrows in a groupoid
category then we can represent this by the picture

t(r0) = g(u′) s(r0) = s(r1)r0oo r1 // t(r1) = g(g′(u′′))

This diagram in particular demonstrates that the composition c(r1, i(r0)) makes
sense. Recall that

R′ = R×(t,s),U×SU,g×g U
′ ×S U

′

hence a T -valued point of R′ looks like (r, (u′
0, u

′
1)) with t(r) = g(u′

0) and s(r) =
g(u′

1). In particular given ((u′, r0), (u′′, r1)) as above we get the T -valued point
(c(r1, i(r0)), (g′(u′′), u′)) of R′ because we have t(c(r1, i(r0))) = t(r1) = g(g′(u′′))
and s(c(r1, i(r0))) = s(i(r0)) = t(r0) = g(u′). We leave it to the reader to show
that the left square commutes with this definition.
To show that the left square is cartesian, suppose we are given (v′′, p′) and (v′, p)
which are T -valued points of U ′′ ×g′,U ′,t R

′ and U ′ ×g,U,t R with v′ = s′(p′). This
also means that g′(v′′) = t′(p′) and g(v′) = t(p). By the discussion above we know

https://stacks.math.columbia.edu/tag/04MV
https://stacks.math.columbia.edu/tag/04MW
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that we can write p′ = (r, (u′
0, u

′
1)) with t(r) = g(u′

0) and s(r) = g(u′
1). Using this

notation we see that v′ = s′(p′) = u′
1 and g′(v′′) = t′(p′) = u′

0. Here is a picture

s(p) p // g(v′) = g(u′
1) r // g(u′

0) = g(g′(v′′))

What we have to show is that there exists a unique T -valued point ((u′, r0), (u′′, r1))
as above such that v′ = u′, p = r0, v′′ = u′′ and p′ = (c(r1, i(r0)), (g′(u′′), u′)).
Comparing the two diagrams above it is clear that we have no choice but to take

((u′, r0), (u′′, r1)) = ((v′, p), (v′′, c(r, p))

Some details omitted. □

Lemma 9.4.04MX Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g ◦ g′. Let
(U ′, R′, s′, t′, c′) be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U ,
let h′ = s′ ◦ pr1 : U ′′ ×g′,U ′,t R → U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R → U .
Let τ ∈ {Zariski, étale, smooth, syntomic, fppf, fpqc}. Let P be a property of
morphisms of schemes which is preserved under base change, and which is local on
the target for the τ -topology. If

(1) h(U ′ ×U R) is open in U ,
(2) {h : U ′ ×U R → h(U ′ ×U R)} is a τ -covering,
(3) h′ has property P,

then h′′ has property P. Conversely, if
(a) {t : R → U} is a τ -covering,
(d) h′′ has property P,

then h′ has property P.

Proof. This follows formally from the properties of the diagram of Lemma 9.3. In
the first case, note that the image of the morphism h′′ is contained in the image
of h, as g′′ = g ◦ g′. Hence we may replace the U in the lower right corner of the
diagram by h(U ′ ×U R). This explains the significance of conditions (1) and (2) in
the lemma. In the second case, note that {pr0 : U ′ ×g,U,t R → U ′} is a τ -covering
as a base change of τ and condition (a). □

10. Properties of groupoids on fields

04LL A “groupoid on a field” indicates a groupoid scheme (U,R, s, t, c) where U is the
spectrum of a field. It does not mean that (U,R, s, t, c) is defined over a field, more
precisely, it does not mean that the morphisms s, t : R → U are equal. Given any
field k, an abstract group G and a group homomorphism φ : G → Aut(k) we obtain
a groupoid scheme (U,R, s, t, c) over Z by setting

U = Spec(k)

R =
∐

g∈G
Spec(k)

s =
∐

g∈G
Spec(idk)

t =
∐

g∈G
Spec(φ(g))

c = composition in G

https://stacks.math.columbia.edu/tag/04MX
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This example still is a groupoid scheme over Spec(kG). Hence, if G is finite, then
U = Spec(k) is finite over Spec(kG). In some sense our goal in this section is to
show that suitable finiteness conditions on s, t force any groupoid on a field to be
defined over a finite index subfield k′ ⊂ k.

If k is a field and (G,m) is a group scheme over k with structure morphism p : G →
Spec(k), then (Spec(k), G, p, p,m) is an example of a groupoid on a field (and in
this case of course the whole structure is defined over a field). Hence this section
can be viewed as the analogue of Groupoids, Section 7.

Lemma 10.1.04LM Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
If U is the spectrum of a field, then the composition morphism c : R ×s,U,t R → R
is open.

Proof. The composition is isomorphic to the projection map pr1 : R×t,U,t R → R
by Diagram (3.0.2). The projection is open by Morphisms, Lemma 23.4. □

Lemma 10.2.04LN Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
If U is the spectrum of a field, then R is a separated scheme.

Proof. By Groupoids, Lemma 7.3 the stabilizer group scheme G → U is separated.
By Groupoids, Lemma 22.2 the morphism j = (t, s) : R → U ×S U is separated. As
U is the spectrum of a field the scheme U×SU is affine (by the construction of fibre
products in Schemes, Section 17). Hence R is a separated scheme, see Schemes,
Lemma 21.12. □

Lemma 10.3.04LP Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. For any points r, r′ ∈ R there exists a field
extension k′/k and points r1, r2 ∈ R×s,Spec(k) Spec(k′) and a diagram

R R×s,Spec(k) Spec(k′)
pr0oo φ // R×s,Spec(k) Spec(k′)

pr0 // R

such that φ is an isomorphism of schemes over Spec(k′), we have φ(r1) = r2,
pr0(r1) = r, and pr0(r2) = r′.

Proof. This is a special case of Lemma 7.1 parts (1) and (2). □

Lemma 10.4.04LQ Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. Let k′/k be a field extension, U ′ = Spec(k′) and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defining
diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U

all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.

https://stacks.math.columbia.edu/tag/04LM
https://stacks.math.columbia.edu/tag/04LN
https://stacks.math.columbia.edu/tag/04LP
https://stacks.math.columbia.edu/tag/04LQ
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Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, sur-
jective and flat. The morphisms s, t : R → U and the morphism U ′ → U are
universally open by Morphisms, Lemma 23.4. Since R is not empty and U is the
spectrum of a field the morphisms s, t : R → U are surjective and flat. Then you
conclude by using Morphisms, Lemmas 9.4, 9.2, 23.3, 11.8, 11.7, 25.8, and 25.6. □

Lemma 10.5.04LR Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. For any point r ∈ R there exist

(1) a field extension k′/k with k′ algebraically closed,
(2) a point r′ ∈ R′ where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via

Spec(k′) → Spec(k)
such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′, t′ : R′ → Spec(k′) induce isomorphisms k′ → κ(r′).

Proof. Translating the geometric statement into a statement on fields, this means
that we can find a diagram

k′ k′
1

oo

k′

τ

OO

κ(r)
σ

aa

k
s

oo

i

``

k

i

aa

t

OO

where i : k → k′ is the embedding of k into k′, the maps s, t : k → κ(r) are induced
by s, t : R → U , and the map τ : k′ → k′ is an automorphism. To produce such a
diagram we may proceed in the following way:

(1) Pick i : k → k′ a field map with k′ algebraically closed of very large tran-
scendence degree over k.

(2) Pick an embedding σ : κ(r) → k′ such that σ ◦ s = i. Such a σ exists
because we can just choose a transcendence basis {xα}α∈A of κ(r) over k
and find yα ∈ k′, α ∈ A which are algebraically independent over i(k), and
map s(k)({xα}) into k′ by the rules s(λ) 7→ i(λ) for λ ∈ k and xα 7→ yα for
α ∈ A. Then extend to τ : κ(α) → k′ using that k′ is algebraically closed.

(3) Pick an automorphism τ : k′ → k′ such that τ ◦ i = σ ◦ t. To do this
pick a transcendence basis {xα}α∈A of k over its prime field. On the one
hand, extend {i(xα)} to a transcendence basis of k′ by adding {yβ}β∈B and
extend {σ(t(xα))} to a transcendence basis of k′ by adding {zγ}γ∈C . As k′

is algebraically closed we can extend the isomorphism σ ◦ t ◦ i−1 : i(k) →
σ(t(k)) to an isomorphism τ ′ : i(k) → σ(t(k)) of their algebraic closures in
k′. As k′ has large transcendence degree we see that the sets B and C have
the same cardinality. Thus we can use a bijection B → C to extend τ ′ to
an isomorphism

i(k)({yβ}) −→ σ(t(k))({zγ})

and then since k′ is the algebraic closure of both sides we see that this
extends to an automorphism τ : k′ → k′ as desired.

https://stacks.math.columbia.edu/tag/04LR
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This proves the lemma. □

Lemma 10.6.04LS Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. If r ∈ R is a point such that s, t induce
isomorphisms k → κ(r), then the map

R −→ R, x 7−→ c(r, x)
(see proof for precise notation) is an automorphism R → R which maps e to r.
Proof. This is completely obvious if you think about groupoids in a functorial way.
But we will also spell it out completely. Denote a : U → R the morphism with
image r such that s◦a = idU which exists by the hypothesis that s : k → κ(r) is an
isomorphism. Similarly, denote b : U → R the morphism with image r such that
t ◦ b = idU . Note that b = a ◦ (t ◦ a)−1, in particular a ◦ s ◦ b = b.
Consider the morphism Ψ : R → R given on T -valued points by

(f : T → R) 7−→ (c(a ◦ t ◦ f, f) : T → R)
To see this is defined we have to check that s ◦ a ◦ t ◦ f = t ◦ f which is obvious as
s ◦ a = 1. Note that Φ(e) = a, so that in order to prove the lemma it suffices to
show that Φ is an automorphism of R. Let Φ : R → R be the morphism given on
T -valued points by

(g : T → R) 7−→ (c(i ◦ b ◦ t ◦ g, g) : T → R).
This is defined because s ◦ i ◦ b ◦ t ◦ g = t ◦ b ◦ t ◦ g = t ◦ g. We claim that Φ and Ψ
are inverse to each other. To see this we compute

c(a ◦ t ◦ c(i ◦ b ◦ t ◦ g, g), c(i ◦ b ◦ t ◦ g, g))
= c(a ◦ t ◦ i ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(a ◦ s ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(c(b ◦ t ◦ g, i ◦ b ◦ t ◦ g), g))
= c(e, g)
= g

where we have used the relation a ◦ s ◦ b = b shown above. In the other direction
we have

c(i ◦ b ◦ t ◦ c(a ◦ t ◦ f, f), c(a ◦ t ◦ f, f))
= c(i ◦ b ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(i ◦ a ◦ (t ◦ a)−1 ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(i ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(c(i ◦ a ◦ t ◦ f, a ◦ t ◦ f), f)
= c(e, f)
= f

The lemma is proved. □

Lemma 10.7.0B7V Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. If U is the spectrum of a field, W ⊂ R is open, and Z → R is a morphism of
schemes, then the image of the composition Z ×s,U,t W → R×s,U,t R → R is open.

https://stacks.math.columbia.edu/tag/04LS
https://stacks.math.columbia.edu/tag/0B7V
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Proof. Write U = Spec(k). Consider a field extension k′/k. Denote U ′ = Spec(k′).
Let R′ be the restriction of R via U ′ → U . Set Z ′ = Z ×R R′ and W ′ = R′ ×R W .
Consider a point ξ = (z, w) of Z×s,U,tW . Let r ∈ R be the image of z under Z → R.
Pick k′ ⊃ k and r′ ∈ R′ as in Lemma 10.5. We can choose z′ ∈ Z ′ mapping to
z and r′. Then we can find ξ′ ∈ Z ′ ×s′,U ′,t′ W ′ mapping to z′ and ξ. The open
c(r′,W ′) (Lemma 10.6) is contained in the image of Z ′ ×s′,U ′,t′ W ′ → R′. Observe
that Z ′ ×s′,U ′,t′ W ′ = (Z ×s,U,t W ) ×R×s,U,tR (R′ ×s′,U ′,t′ R′). Hence the image of
Z ′ ×s′,U ′,t′ W ′ → R′ → R is contained in the image of Z×s,U,tW → R. As R′ → R
is open (Lemma 10.4) we conclude the image contains an open neighbourhood of
the image of ξ as desired. □

Lemma 10.8.04LT Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. By abuse of notation denote e ∈ R the image
of the identity morphism e : U → R. Then

(1) every local ring OR,r of R has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of R passing through e, and
(3) Z is geometrically irreducible over k via either s or t.

Proof. Let r ∈ R be a point. In this proof we will use the correspondence between
irreducible components of R passing through a point r and minimal primes of
the local ring OR,r without further mention. Choose k ⊂ k′ and r′ ∈ R′ as in
Lemma 10.5. Note that OR,r → OR′,r′ is faithfully flat and local, see Lemma 10.4.
Hence the result for r′ ∈ R′ implies the result for r ∈ R. In other words we may
assume that s, t : k → κ(r) are isomorphisms. By Lemma 10.6 there exists an
automorphism moving e to r. Hence we may assume r = e, i.e., part (1) follows
from part (2).

We first prove (2) in case k is separably algebraically closed. Namely, let X,Y ⊂ R
be irreducible components passing through e. Then by Varieties, Lemma 8.4 and
8.3 the scheme X ×s,U,t Y is irreducible as well. Hence c(X ×s,U,t Y ) ⊂ R is an
irreducible subset. We claim it contains both X and Y (as subsets of R). Namely,
let T be the spectrum of a field. If x : T → X is a T -valued point of X, then
c(x, e ◦ s ◦ x) = x and e ◦ s ◦ x factors through Y as e ∈ Y . Similarly for points of
Y . This clearly implies that X = Y , i.e., there is a unique irreducible component
of R passing through e.

Proof of (2) and (3) in general. Let k ⊂ k′ be a separable algebraic closure, and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via Spec(k′) → Spec(k). By
the previous paragraph there is exactly one irreducible component Z ′ of R′ passing
through e′. Denote e′′ ∈ R ×s,U U ′ the base change of e. As R′ → R ×s,U U ′

is faithfully flat, see Lemma 10.4, and e′ 7→ e′′ we see that there is exactly one
irreducible component Z ′′ of R×s,kk

′ passing through e′′. This implies, as R×kk
′ →

R is faithfully flat, that there is exactly one irreducible component Z of R passing
through e. This proves (2).

To prove (3) let Z ′′′ ⊂ R ×k k
′ be an arbitrary irreducible component of Z ×k k

′.
By Varieties, Lemma 8.13 we see that Z ′′′ = σ(Z ′′) for some σ ∈ Gal(k′/k). Since
σ(e′′) = e′′ we see that e′′ ∈ Z ′′′ and hence Z ′′′ = Z ′′. This means that Z is
geometrically irreducible over Spec(k) via the morphism s. The same argument
implies that Z is geometrically irreducible over Spec(k) via the morphism t. □

https://stacks.math.columbia.edu/tag/04LT
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Lemma 10.9.04LU Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then

(1) R is equidimensional,
(2) dim(R) = dimr(R) for all r ∈ R,
(3) for any r ∈ R we have trdegs(k)(κ(r)) = trdegt(k)(κ(r)), and
(4) for any closed point r ∈ R we have dim(R) = dim(OR,r).

Proof. Let r, r′ ∈ R. Then dimr(R) = dimr′(R) by Lemma 10.3 and Morphisms,
Lemma 28.3. By Morphisms, Lemma 28.1 we have

dimr(R) = dim(OR,r) + trdegs(k)(κ(r)) = dim(OR,r) + trdegt(k)(κ(r)).

On the other hand, the dimension of R (or any open subset of R) is the supremum
of the dimensions of the local rings of R, see Properties, Lemma 10.3. Clearly
this is maximal for closed points r in which case trdegk(κ(r)) = 0 (by the Hilbert
Nullstellensatz, see Morphisms, Section 16). Hence the lemma follows. □

Lemma 10.10.04MQ Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then
dim(R) = dim(G) where G is the stabilizer group scheme of R.

Proof. Let Z ⊂ R be the irreducible component passing through e (see Lemma
10.8) thought of as an integral closed subscheme of R. Let k′

s, resp. k′
t be the

integral closure of s(k), resp. t(k) in Γ(Z,OZ). Recall that k′
s and k′

t are fields, see
Varieties, Lemma 28.4. By Varieties, Proposition 31.1 we have k′

s = k′
t as subrings

of Γ(Z,OZ). As e factors through Z we obtain a commutative diagram

k

t ##

1

))Γ(Z,OZ) e // k

k

s
;;

1

55

This on the one hand shows that k′
s = s(k), k′

t = t(k), so s(k) = t(k), which
combined with the diagram above implies that s = t! In other words, we conclude
that Z is a closed subscheme of G = R×(t,s),U×SU,∆U . The lemma follows as both
G and R are equidimensional, see Lemma 10.9 and Groupoids, Lemma 8.1. □

Remark 10.11.04MR Warning: Lemma 10.10 is wrong without the condition that s
and t are locally of finite type. An easy example is to start with the action

Gm,Q ×Q A1
Q → A1

Q

and restrict the corresponding groupoid scheme to the generic point of A1
Q. In

other words restrict via the morphism Spec(Q(x)) → Spec(Q[x]) = A1
Q. Then you

get a groupoid scheme (U,R, s, t, c) with U = Spec(Q(x)) and

R = Spec
(

Q(x)[y]
[

1
P (xy) , P ∈ Q[T ], P ̸= 0

])
In this case dim(R) = 1 and dim(G) = 0.

https://stacks.math.columbia.edu/tag/04LU
https://stacks.math.columbia.edu/tag/04MQ
https://stacks.math.columbia.edu/tag/04MR
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Lemma 10.12.04RA Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type, and
(3) the characteristic of k is zero.

Then s, t : R → U are smooth.
Proof. By Lemma 4.1 the sheaf of differentials of R → U is free. Hence smoothness
follows from Varieties, Lemma 25.1. □

Lemma 10.13.04RB Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type,
(3) R is reduced, and
(4) k is perfect.

Then s, t : R → U are smooth.
Proof. By Lemma 4.1 the sheaf ΩR/U is free. Hence the lemma follows from
Varieties, Lemma 25.2. □

11. Morphisms of groupoids on fields

04Q4 This section studies morphisms between groupoids on fields. This is slightly more
general, but very akin to, studying morphisms of groupschemes over a field.
Situation 11.1.04Q5 Let S be a scheme. Let U = Spec(k) be a scheme over S with
k a field. Let (U,R1, s1, t1, c1), (U,R2, s2, t2, c2) be groupoid schemes over S with
identical first component. Let a : R1 → R2 be a morphism such that (idU , a)
defines a morphism of groupoid schemes over S, see Groupoids, Definition 13.1. In
particular, the following diagrams commute

R1
t1

((
s1

��

a
  
R2

t2

��

s2
// U

U

R1 ×s1,U,t1 R1 c1
//

a×a

��

R1

a

��
R2 ×s2,U,t2 R2

c2 // R2

The following lemma is a generalization of Groupoids, Lemma 7.7.
Lemma 11.2.04Q6 Notation and assumptions as in Situation 11.1. If a(R1) is open
in R2, then a(R1) is closed in R2.
Proof. Let r2 ∈ R2 be a point in the closure of a(R1). We want to show r2 ∈ a(R1).
Pick k ⊂ k′ and r′

2 ∈ R′
2 adapted to (U,R2, s2, t2, c2) and r2 as in Lemma 10.5. Let

R′
i be the restriction of Ri via the morphism U ′ = Spec(k′) → U = Spec(k). Let

a′ : R′
1 → R′

2 be the base change of a. The diagram

R′
1

a′
//

p1

��

R′
2

p2

��
R1

a // R2

https://stacks.math.columbia.edu/tag/04RA
https://stacks.math.columbia.edu/tag/04RB
https://stacks.math.columbia.edu/tag/04Q5
https://stacks.math.columbia.edu/tag/04Q6
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is a fibre square. Hence the image of a′ is the inverse image of the image of a via
the morphism p2 : R′

2 → R2. By Lemma 10.4 the map p2 is surjective and open.
Hence by Topology, Lemma 6.4 we see that r′

2 is in the closure of a′(R′
1). This

means that we may assume that r2 ∈ R2 has the property that the maps k → κ(r2)
induced by s2 and t2 are isomorphisms.

In this case we can use Lemma 10.6. This lemma implies c(r2, a(R1)) is an open
neighbourhood of r2. Hence a(R1) ∩ c(r2, a(R1)) ̸= ∅ as we assumed that r2 was
a point of the closure of a(R1). Using the inverse of R2 and R1 we see this means
c2(a(R1), a(R1)) contains r2. As c2(a(R1), a(R1)) ⊂ a(c1(R1, R1)) = a(R1) we
conclude r2 ∈ a(R1) as desired. □

Lemma 11.3.04Q7 Notation and assumptions as in Situation 11.1. Let Z ⊂ R2
be the reduced closed subscheme (see Schemes, Definition 12.5) whose underlying
topological space is the closure of the image of a : R1 → R2. Then c2(Z×s2,U,t2Z) ⊂
Z set theoretically.

Proof. Consider the commutative diagram

R1 ×s1,U,t1 R1 //

��

R1

��
R2 ×s2,U,t2 R2 // R2

By Varieties, Lemma 24.2 the closure of the image of the left vertical arrow is (set
theoretically) Z ×s2,U,t2 Z. Hence the result follows. □

Lemma 11.4.04Q8 Notation and assumptions as in Situation 11.1. Assume that k is
perfect. Let Z ⊂ R2 be the reduced closed subscheme (see Schemes, Definition 12.5)
whose underlying topological space is the closure of the image of a : R1 → R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)

is a groupoid scheme over S.

Proof. We first explain why the statement makes sense. Since U is the spec-
trum of a perfect field k, the scheme Z is geometrically reduced over k (via either
projection), see Varieties, Lemma 6.3. Hence the scheme Z ×s2,U,t2 Z ⊂ Z is re-
duced, see Varieties, Lemma 6.7. Hence by Lemma 11.3 we see that c induces a
morphism Z ×s2,U,t2 Z → Z. Finally, it is clear that e2 factors through Z and
that the map i2 : R2 → R2 preserves Z. Since the morphisms of the septuple
(U,R2, s2, t2, c2, e2, i2) satisfies the axioms of a groupoid, it follows that after re-
stricting to Z they satisfy the axioms. □

Lemma 11.5.04Q9 Notation and assumptions as in Situation 11.1. If the image a(R1)
is a locally closed subset of R2 then it is a closed subset.

Proof. Let k ⊂ k′ be a perfect closure of the field k. Let R′
i be the restriction of

Ri via the morphism U ′ = Spec(k′) → Spec(k). Note that the morphisms R′
i → Ri

are universal homeomorphisms as compositions of base changes of the universal
homeomorphism U ′ → U (see diagram in statement of Lemma 10.4). Hence it
suffices to prove that a′(R′

1) is closed in R′
2. In other words, we may assume that

k is perfect.

https://stacks.math.columbia.edu/tag/04Q7
https://stacks.math.columbia.edu/tag/04Q8
https://stacks.math.columbia.edu/tag/04Q9
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If k is perfect, then the closure of the image is a groupoid scheme Z ⊂ R2, by
Lemma 11.4. By the same lemma applied to idR1 : R1 → R1 we see that (R2)red

is a groupoid scheme. Thus we may apply Lemma 11.2 to the morphism a|(R2)red
:

(R2)red → Z to conclude that Z equals the image of a. □

Lemma 11.6.04QA Notation and assumptions as in Situation 11.1. Assume that a :
R1 → R2 is a quasi-compact morphism. Let Z ⊂ R2 be the scheme theoretic image
(see Morphisms, Definition 6.2) of a : R1 → R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)

is a groupoid scheme over S.

Proof. The main difficulty is to show that c2|Z×s2,U,t2 Z maps into Z. Consider the
commutative diagram

R1 ×s1,U,t1 R1 //

a×a

��

R1

��
R2 ×s2,U,t2 R2 // R2

By Varieties, Lemma 24.3 we see that the scheme theoretic image of a×a is Z×s2,U,t2

Z. By the commutativity of the diagram we conclude that Z ×s2,U,t2 Z maps into
Z by the bottom horizontal arrow. As in the proof of Lemma 11.4 it is also true
that i2(Z) ⊂ Z and that e2 factors through Z. Hence we conclude as in the proof
of that lemma. □

Lemma 11.7.04QB Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume U is the spectrum of a field. Let Z ⊂ U ×S U be the reduced closed
subscheme (see Schemes, Definition 12.5) whose underlying topological space is the
closure of the image of j = (t, s) : R → U ×S U . Then pr02(Z ×pr1,U,pr0 Z) ⊂ Z set
theoretically.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 11.3. But we can also prove it directly as follows.

Write U = Spec(k). Denote Rs (resp. Zs, resp. U2
s ) the scheme R (resp. Z, resp.

U ×S U) viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote
tR (resp. tZ, resp. tU

2) the scheme R (resp. Z, resp. U ×S U) viewed as a scheme
over k via t (resp. pr0|Z , resp. pr0). The morphism j induces morphisms of schemes
js : Rs → U2

s and tj : tR → tU
2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj

��

R

j

��
U2

s ×k tU
2 // U ×S U

By Varieties, Lemma 24.2 we see that the closure of the image of js × tj is Zs ×k tZ.
By the commutativity of the diagram we conclude that Zs ×k tZ maps into Z by
the bottom horizontal arrow. □

Lemma 11.8.04QC Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U is the spectrum of a perfect field. Let Z ⊂ U ×S U be the reduced closed

https://stacks.math.columbia.edu/tag/04QA
https://stacks.math.columbia.edu/tag/04QB
https://stacks.math.columbia.edu/tag/04QC
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subscheme (see Schemes, Definition 12.5) whose underlying topological space is the
closure of the image of j = (t, s) : R → U ×S U . Then

(U,Z, pr0|Z , pr1|Z , pr02|Z×pr1,U,pr0 Z)
is a groupoid scheme over S.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 11.4. But we can also prove it directly as follows.
We first explain why the statement makes sense. Since U is the spectrum of a
perfect field k, the scheme Z is geometrically reduced over k (via either projection),
see Varieties, Lemma 6.3. Hence the scheme Z ×pr1,U,pr0 Z ⊂ Z is reduced, see
Varieties, Lemma 6.7. Hence by Lemma 11.7 we see that pr02 induces a morphism
Z ×pr1,U,pr0 Z → Z. Finally, it is clear that ∆U/S factors through Z and that
the map σ : U ×S U → U ×S U , (x, y) 7→ (y, x) preserves Z. Since (U,U ×S

U,pr0,pr1,pr02,∆U/S , σ) satisfies the axioms of a groupoid, it follows that after
restricting to Z they satisfy the axioms. □

Lemma 11.9.04QD Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U is the spectrum of a field and assume R is quasi-compact (equivalently s, t
are quasi-compact). Let Z ⊂ U×SU be the scheme theoretic image (see Morphisms,
Definition 6.2) of j = (t, s) : R → U ×S U . Then

(U,Z, pr0|Z , pr1|Z , pr02|Z×pr1,U,pr0 Z)
is a groupoid scheme over S.

Proof. As (U,U ×S U,pr1,pr0,pr02) is a groupoid scheme over S this is a special
case of Lemma 11.6. But we can also prove it directly as follows.
The main difficulty is to show that pr02|Z×pr1,U,pr0 Z maps into Z. Write U =
Spec(k). Denote Rs (resp. Zs, resp. U2

s ) the scheme R (resp. Z, resp. U ×S U)
viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote tR (resp.
tZ, resp. tU

2) the scheme R (resp. Z, resp. U ×S U) viewed as a scheme over
k via t (resp. pr0|Z , resp. pr0). The morphism j induces morphisms of schemes
js : Rs → U2

s and tj : tR → tU
2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj

��

R

j

��
U2

s ×k tU
2 // U ×S U

By Varieties, Lemma 24.3 we see that the scheme theoretic image of js × tj is
Zs ×k tZ. By the commutativity of the diagram we conclude that Zs ×k tZ maps
into Z by the bottom horizontal arrow. As in the proof of Lemma 11.8 it is also
true that σ(Z) ⊂ Z and that ∆U/S factors through Z. Hence we conclude as in the
proof of that lemma. □

12. Slicing groupoids

04LV The following lemma shows that we may slice a Cohen-Macaulay groupoid scheme
in order to reduce the dimension of the fibres, provided that the dimension of the
stabilizer is small. This is an essential step in the process of improving a given
presentation of a quotient stack.

https://stacks.math.columbia.edu/tag/04QD
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Situation 12.1.04MY Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let u ∈ U be a point, and let u′ ∈ U ′

be a point such that g(u′) = u. Given these data, denote (U ′, R′, s′, t′, c′) the
restriction of (U,R, s, t, c) via the morphism g. Denote G → U the stabilizer group
scheme of R, which is a locally closed subscheme of R. Denote h the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U.

Denote Fu = s−1(u) (scheme theoretic fibre), and Gu the scheme theoretic fibre of
G over u. Similarly for R′ we denote F ′

u′ = (s′)−1(u′). Because g(u′) = u we have

F ′
u′ = h−1(u) ×Spec(κ(u)) Spec(κ(u′)).

The point e(u) ∈ R may be viewed as a point on Gu and Fu also, and e′(u′) is a
point of R′ (resp. G′

u′ , resp. F ′
u′) which maps to e(u) in R (resp. Gu, resp. Fu).

Lemma 12.2.0461 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over
S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-Macaulay
and locally of finite presentation. Let u ∈ U be a finite type point of the scheme U ,
see Morphisms, Definition 16.3. With notation as in Situation 12.1, set

d1 = dim(Gu), d2 = dime(u)(Fu).

If d2 > d1, then there exist an affine scheme U ′ and a morphism g : U ′ → U such
that (with notation as in Situation 12.1)

(1) g is an immersion
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay at (u, e(u)), and
(5) we have dime′(u)(F ′

u) = d2 − 1.

Proof. Let Spec(A) ⊂ U be an affine neighbourhood of u such that u corresponds
to a closed point of U , see Morphisms, Lemma 16.4. Let Spec(B) ⊂ R be an affine
neighbourhood of e(u) which maps via j into the open Spec(A) ×S Spec(A) ⊂
U ×S U . Let m ⊂ A be the maximal ideal corresponding to u. Let q ⊂ B be the
prime ideal corresponding to e(u). Pictures:

B A
s
oo

A

t

OO

and

Bq Ams
oo

Am

t

OO

Note that the two induced maps s, t : κ(m) → κ(q) are equal and isomorphisms as
s ◦ e = t ◦ e = idU . In particular we see that q is a maximal ideal as well. The ring
maps s, t : A → B are of finite presentation and flat. By assumption the ring

OFu,e(u) = Bq/s(m)Bq

is Cohen-Macaulay of dimension d2. The equality of dimension holds by Morphisms,
Lemma 28.1.

Let R′′ be the restriction of R to u = Spec(κ(u)) via the morphism Spec(κ(u)) → U .
As u → U is locally of finite type, we see that (Spec(κ(u)), R′′, s′′, t′′, c′′) is a
groupoid scheme with s′′, t′′ locally of finite type, see Lemma 9.1. By Lemma 10.10
this implies that dim(G′′) = dim(R′′). We also have dim(R′′) = dime′′(R′′) =

https://stacks.math.columbia.edu/tag/04MY
https://stacks.math.columbia.edu/tag/0461
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dim(OR′′,e′′), see Lemma 10.9. By Groupoids, Lemma 18.4 we have G′′ = Gu.
Hence we conclude that dim(OR′′,e′′) = d1.

As a scheme R′′ is

R′′ = R×(U×SU)

(
Spec(κ(m)) ×S Spec(κ(m))

)
Hence an affine open neighbourhood of e′′ is the spectrum of the ring

B ⊗(A⊗A) (κ(m) ⊗ κ(m)) = B/s(m)B + t(m)B

We conclude that
OR′′,e′′ = Bq/s(m)Bq + t(m)Bq

and so now we know that this ring has dimension d1.

We claim this implies we can find an element f ∈ m such that

dim(Bq/(s(m)Bq + fBq) < d2

Namely, suppose nj ⊃ s(m)Bq, j = 1, . . . ,m correspond to the minimal primes of
the local ring Bq/s(m)Bq. There are finitely many as this ring is Noetherian (since
it is essentially of finite type over a field – but also because a Cohen-Macaulay ring
is Noetherian). By the Cohen-Macaulay condition we have dim(Bq/nj) = d2, for
example by Algebra, Lemma 104.4. Note that dim(Bq/(nj + t(m)Bq)) ≤ d1 as it is
a quotient of the ring OR′′,e′′ = Bq/s(m)Bq + t(m)Bq which has dimension d1. As
d1 < d2 this implies that m ̸⊂ t−1(ni). By prime avoidance, see Algebra, Lemma
15.2, we can find f ∈ m with t(f) ̸∈ nj for j = 1, . . . ,m. For this choice of f we
have the displayed inequality above, see Algebra, Lemma 60.13.

Set A′ = A/fA and U ′ = Spec(A′). Then it is clear that U ′ → U is an immersion,
locally of finite presentation and that u ∈ U ′. Thus (1), (2) and (3) of the lemma
hold. The morphism

U ′ ×g,U,t R −→ U

factors through Spec(A) and corresponds to the ring map

B/t(f)B A/(f) ⊗A,t B A
soo

Now, we see t(f) is not a zerodivisor on Bq/s(m)Bq as this is a Cohen-Macaulay
ring of positive dimension and f is not contained in any minimal prime, see for
example Algebra, Lemma 104.2. Hence by Algebra, Lemma 128.5 we conclude that
s : Am → Bq/t(f)Bq is flat with fibre ring Bq/(s(m)Bq + t(f)Bq) which is Cohen-
Macaulay by Algebra, Lemma 104.2 again. This implies part (4) of the lemma. To
see part (5) note that by Diagram (9.0.1) the fibre F ′

u is equal to the fibre of h over
u. Hence dime′(u)(F ′

u) = dim(Bq/(s(m)Bq + t(f)Bq)) by Morphisms, Lemma 28.1
and the dimension of this ring is d2 − 1 by Algebra, Lemma 104.2 once more. This
proves the final assertion of the lemma and we win. □

Now that we know how to slice we can combine it with the preceding material to get
the following “optimal” result. It is optimal in the sense that since Gu is a locally
closed subscheme of Fu one always has the inequality dim(Gu) = dime(u)(Gu) ≤
dime(u)(Fu) so it is not possible to slice more than in the lemma.
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Lemma 12.3.04MZ Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over
S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-Macaulay
and locally of finite presentation. Let u ∈ U be a finite type point of the scheme U ,
see Morphisms, Definition 16.3. With notation as in Situation 12.1 there exist an
affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,tR −→ U is Cohen-Macaulay and locally of finite

presentation,
(5) the morphisms s′, t′ : R′ → U ′ are Cohen-Macaulay and locally of finite

presentation, and
(6) dime(u)(F ′

u) = dim(G′
u).

Proof. As s is locally of finite presentation the scheme Fu is locally of finite type
over κ(u). Hence dime(u)(Fu) < ∞ and we may argue by induction on dime(u)(Fu).

If dime(u)(Fu) = dim(Gu) there is nothing to prove. Assume dime(u)(Fu) >
dim(Gu). This means that Lemma 12.2 applies and we find a morphism g : U ′ → U
which has properties (1), (2), (3), instead of (6) we have dime(u)(F ′

u) < dime(u)(Fu),
and instead of (4) and (5) we have that the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U

is Cohen-Macaulay at the point (u, e(u)). We apply Remark 6.3 and we obtain
an open subscheme U ′′ ⊂ U ′ such that U ′′ ×g,U,t R ⊂ U ′ ×g,U,t R is the largest
open subscheme on which h is Cohen-Macaulay. Since (u, e(u)) ∈ U ′′ ×g,U,t R we
see that u ∈ U ′′. Hence we may replace U ′ by U ′′ and assume that in fact h is
Cohen-Macaulay everywhere! By Lemma 9.2 we conclude that s′, t′ are locally of
finite presentation and Cohen-Macaulay (use Morphisms, Lemma 21.4 and More
on Morphisms, Lemma 22.6).

By construction dime′(u)(F ′
u) < dime(u)(Fu), so we may apply the induction hy-

pothesis to (U ′, R′, s′, t′, c′) and the point u ∈ U ′. Note that u is also a finite type
point of U ′ (for example you can see this using the characterization of finite type
points from Morphisms, Lemma 16.4). Let g′ : U ′′ → U ′ and (U ′′, R′′, s′′, t′′, c′′)
be the solution of the corresponding problem starting with (U ′, R′, s′, t′, c′) and the
point u ∈ U ′. We claim that the composition

g′′ = g ◦ g′ : U ′′ −→ U

is a solution for the original problem. Properties (1), (2), (3), (5), and (6) are
immediate. To see (4) note that the morphism

h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R −→ U

is locally of finite presentation and Cohen-Macaulay by an application of Lemma
9.4 (use More on Morphisms, Lemma 22.11 to see that Cohen-Macaulay morphisms
are fppf local on the target). □

In case the stabilizer group scheme has fibres of dimension 0 this leads to the
following slicing lemma.

https://stacks.math.columbia.edu/tag/04MZ


MORE ON GROUPOID SCHEMES 23

Lemma 12.4.04N0 Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over
S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-Macaulay
and locally of finite presentation. Let u ∈ U be a finite type point of the scheme
U , see Morphisms, Definition 16.3. Assume that G → U is locally quasi-finite.
With notation as in Situation 12.1 there exist an affine scheme U ′ and a morphism
g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is flat, locally of finite presentation,

and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation, and

locally quasi-finite.

Proof. Take g : U ′ → U as in Lemma 12.3. Since h−1(u) = F ′
u we see that

h has relative dimension ≤ 0 at (u, e(u)). Hence, by Remark 6.3, we obtain an
open subscheme U ′′ ⊂ U ′ such that u ∈ U ′′ and U ′′ ×g,U,t R is the maximal open
subscheme of U ′ ×g,U,tR on which h has relative dimension ≤ 0. After replacing U ′

by U ′′ we see that h has relative dimension ≤ 0. This implies that h is locally quasi-
finite by Morphisms, Lemma 29.5. Since it is still locally of finite presentation and
Cohen-Macaulay we see that it is flat, locally of finite presentation and locally quasi-
finite, i.e., (4) above holds. This implies that s′ is flat, locally of finite presentation
and locally quasi-finite as a base change of h, see Lemma 9.2. □

13. Étale localization of groupoids

03FK In this section we begin applying the étale localization techniques of More on Mor-
phisms, Section 41 to groupoid schemes. More advanced material of this kind can be
found in More on Groupoids in Spaces, Section 15. Lemma 13.2 will be used to prove
results on algebraic spaces separated and quasi-finite over a scheme, namely Mor-
phisms of Spaces, Proposition 50.2 and its corollary Morphisms of Spaces, Lemma
51.1.

Lemma 13.1.03FL Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let p ∈ S be a point, and let u ∈ U be a point lying over p. Assume that

(1) U → S is locally of finite type,
(2) U → S is quasi-finite at u,
(3) U → S is separated,
(4) R → S is separated,
(5) s, t are flat and locally of finite presentation, and
(6) s−1({u}) is finite.

https://stacks.math.columbia.edu/tag/04N0
https://stacks.math.columbia.edu/tag/03FL
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Then there exists an étale neighbourhood (S′, p′) → (S, p) with κ(p) = κ(p′) and a
base change diagram

R′ ⨿W ′ S′ ×S R //

s′

��
t′

��

R

s

��
t

��
U ′ ⨿W S′ ×S U //

��

U

��
S′ // S

where the equal signs are decompositions into open and closed subschemes such that
(a) there exists a point u′ of U ′ mapping to u in U ,
(b) the fibre (U ′)p′ equals t′

(
(s′)−1({u′})

)
set theoretically,

(c) the fibre (R′)p′ equals (s′)−1(
(U ′)p′

)
set theoretically,

(d) the schemes U ′ and R′ are finite over S′,
(e) we have s′(R′) ⊂ U ′ and t′(R′) ⊂ U ′,
(f) we have c′(R′ ×s′,U ′,t′ R′) ⊂ R′ where c′ is the base change of c, and
(g) the morphisms s′, t′, c′ determine a groupoid structure by taking the system

(U ′, R′, s′|R′ , t′|R′ , c′|R′×s′,U′,t′ R′).

Proof. Let us denote f : U → S the structure morphism of U . By assumption
(6) we can write s−1({u}) = {r1, . . . , rn}. Since this set is finite, we see that s is
quasi-finite at each of these finitely many inverse images, see Morphisms, Lemma
20.7. Hence we see that f ◦s : R → S is quasi-finite at each ri (Morphisms, Lemma
20.12). Hence ri is isolated in the fibre Rp, see Morphisms, Lemma 20.6. Write
t({r1, . . . , rn}) = {u1, . . . , um}. Note that it may happen that m < n and note that
u ∈ {u1, . . . , um}. Since t is flat and locally of finite presentation, the morphism of
fibres tp : Rp → Up is flat and locally of finite presentation (Morphisms, Lemmas
25.8 and 21.4), hence open (Morphisms, Lemma 25.10). The fact that each ri is
isolated in Rp implies that each uj = t(ri) is isolated in Up. Using Morphisms,
Lemma 20.6 again, we see that f is quasi-finite at u1, . . . , um.

Denote Fu = s−1(u) and Fuj = s−1(uj) the scheme theoretic fibres. Note that
Fu is finite over κ(u) as it is locally of finite type over κ(u) with finitely many
points (for example it follows from the much more general Morphisms, Lemma
57.9). By Lemma 7.1 we see that Fu and Fuj

become isomorphic over a common
field extension of κ(u) and κ(uj). Hence we see that Fuj

is finite over κ(uj). In
particular we see s−1({uj}) is a finite set for each j = 1, . . . ,m. Thus we see that
assumptions (2) and (6) hold for each uj also (above we saw that U → S is quasi-
finite at uj). Hence the argument of the first paragraph applies to each uj and we
see that R → U is quasi-finite at each of the points of

{r1, . . . , rN } = s−1({u1, . . . , um})

Note that t({r1, . . . , rN }) = {u1, . . . , um} and t−1({u1, . . . , um}) = {r1, . . . , rN }
since R is a groupoid2. Moreover, we have pr0(c−1({r1, . . . , rN })) = {r1, . . . , rN }

2Explanation in groupoid language: The original set {r1, . . . , rn} was the set of arrows with
source u. The set {u1, . . . , um} was the set of objects isomorphic to u. And {r1, . . . , rN } is the
set of all arrows between all the objects equivalent to u.



MORE ON GROUPOID SCHEMES 25

and pr1(c−1({r1, . . . , rN })) = {r1, . . . , rN }. Similarly we get e({u1, . . . , um}) ⊂
{r1, . . . , rN } and i({r1, . . . , rN }) = {r1, . . . , rN }.

We may apply More on Morphisms, Lemma 41.4 to the pairs (U → S, {u1, . . . , um})
and (R → S, {r1, . . . , rN }) to get an étale neighbourhood (S′, p′) → (S, p) which
induces an identification κ(p) = κ(p′) such that S′ ×S U and S′ ×S R decompose as

S′ ×S U = U ′ ⨿W, S′ ×S R = R′ ⨿W ′

with U ′ → S′ finite and (U ′)p′ mapping bijectively to {u1, . . . , um}, and R′ → S′

finite and (R′)p′ mapping bijectively to {r1, . . . , rN }. Moreover, no point of Wp′

(resp. (W ′)p′) maps to any of the points uj (resp. ri). At this point (a), (b), (c), and
(d) of the lemma are satisfied. Moreover, the inclusions of (e) and (f) hold on fibres
over p′, i.e., s′((R′)p′) ⊂ (U ′)p′ , t′((R′)p′) ⊂ (U ′)p′ , and c′((R′ ×s′,U ′,t′ R′)p′) ⊂
(R′)p′ .

We claim that we can replace S′ by a Zariski open neighbourhood of p′ so that
the inclusions of (e) and (f) hold. For example, consider the set E = (s′|R′)−1(W ).
This is open and closed in R′ and does not contain any points of R′ lying over
p′. Since R′ → S′ is closed, after replacing S′ by S′ \ (R′ → S′)(E) we reach a
situation where E is empty. In other words s′ maps R′ into U ′. Note that this
property is preserved under further shrinking S′. Similarly, we can arrange it so
that t′ maps R′ into U ′. At this point (e) holds. In the same manner, consider the
set E = (c′|R′×s′,U′,t′ R′)−1(W ′). It is open and closed in the scheme R′ ×s′,U ′,t′ R′

which is finite over S′, and does not contain any points lying over p′. Hence after
replacing S′ by S′ \(R′ ×s′,U ′,t′ R′ → S′)(E) we reach a situation where E is empty.
In other words we obtain the inclusion in (f). We may repeat the argument also
with the identity e′ : S′ ×S U → S′ ×S R and the inverse i′ : S′ ×S R → S′ ×S R
so that we may assume (after shrinking S′ some more) that (e′|U ′)−1(W ′) = ∅ and
(i′|R′)−1(W ′) = ∅.

At this point we see that we may consider the structure

(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′ R′ , e′|U ′ , i′|R′).

The axioms of a groupoid scheme over S′ hold because they hold for the groupoid
scheme (S′ ×S U, S

′ ×S R, s
′, t′, c′, e′, i′). □

Lemma 13.2.03X5 Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let p ∈ S be a point, and let u ∈ U be a point lying over p. Assume assumptions
(1) – (6) of Lemma 13.1 hold as well as

(7) j : R → U ×S U is universally closed3.
Then we can choose (S′, p′) → (S, p) and decompositions S′ ×S U = U ′ ⨿ W and
S′ ×S R = R′ ⨿W ′ and u′ ∈ U ′ such that (a) – (g) of Lemma 13.1 hold as well as

(h) R′ is the restriction of S′ ×S R to U ′.

Proof. We apply Lemma 13.1 for the groupoid (U,R, s, t, c) over the scheme S
with points p and u. Hence we get an étale neighbourhood (S′, p′) → (S, p) and
disjoint union decompositions

S′ ×S U = U ′ ⨿W, S′ ×S R = R′ ⨿W ′

3In view of the other conditions this is equivalent to requiring j to be proper.
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and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), and (g). We may shrink
S′ to a smaller neighbourhood of p′ without affecting the conclusions (a) – (g). We
will show that for a suitable shrinking conclusion (h) holds as well. Let us denote
j′ the base change of j to S′. By conclusion (e) it is clear that

j′−1(U ′ ×S′ U ′) = R′ ⨿Rest

for some open and closed Rest piece. Since U ′ → S′ is finite by conclusion (d) we
see that U ′ ×S′U ′ is finite over S′. Since j is universally closed, also j′ is universally
closed, and hence j′|Rest is universally closed too. By conclusions (b) and (c) we
see that the fibre of

(U ′ ×S′ U ′ → S′) ◦ j′|Rest : Rest −→ S′

over p′ is empty. Hence, since Rest → S′ is closed as a composition of closed
morphisms, after replacing S′ by S′\Im(Rest → S′), we may assume that Rest = ∅.
And this is exactly the condition that R′ is the restriction of S′ ×S R to the open
subscheme U ′ ⊂ S′ ×S U , see Groupoids, Lemma 18.3 and its proof. □

14. Finite groupoids

0AB8 A groupoid scheme (U,R, s, t, c) is sometimes called finite if the morphisms s and
t are finite. This is potentially confusing as it doesn’t imply that U or R or the
quotient sheaf U/R are finite over anything.

Lemma 14.1.0AB9 Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite. There exists a sequence of R-invariant closed subschemes

U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .

such that
⋂
Zr = ∅ and such that s−1(Zr−1) \ s−1(Zr) → Zr−1 \Zr is finite locally

free of rank r.

Proof. Let {Zr} be the stratification of U given by the Fitting ideals of the finite
type quasi-coherent modules s∗OR. See Divisors, Lemma 9.6. Since the identity
e : U → R is a section to s we see that s∗OR contains OS as a direct summand.
Hence U = Z−1 = Z0 (details omitted). Since formation of Fitting ideals commutes
with base change (More on Algebra, Lemma 8.4) we find that s−1(Zr) corresponds
to the rth Fitting ideal of pr1,∗OR×s,U,tR because the lower right square of diagram
(3.0.1) is cartesian. Using the fact that the lower left square is also cartesian we
conclude that s−1(Zr) = t−1(Zr), in other words Zr is R-invariant. The morphism
s−1(Zr−1) \ s−1(Zr) → Zr−1 \Zr is finite locally free of rank r because the module
s∗OR pulls back to a finite locally free module of rank r on Zr−1 \ Zr by Divisors,
Lemma 9.6. □

Lemma 14.2.0ABA Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite. There exists an open subscheme W ⊂ U and a closed subscheme
W ′ ⊂ W such that

(1) W and W ′ are R-invariant,
(2) U = t(s−1(W )) set theoretically,
(3) W is a thickening of W ′, and
(4) the maps s′, t′ of the restriction (W ′, R′, s′, t′, c′) are finite locally free.

https://stacks.math.columbia.edu/tag/0AB9
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Proof. Consider the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 14.1.
We will construct disjoint unions W =

∐
r≥1 Wr and W ′ =

∐
r≥1 W

′
r with each

W ′
r → Wr a thickening of R-invariant subschemes of U such that the morphisms

s′
r, t

′
r of the restrictions (W ′

r, R
′
r, s

′
r, t

′
r, c

′
r) are finite locally free of rank r. To begin

we setW1 = W ′
1 = U\Z1. This is anR-invariant open subscheme of U , it is true that

W0 is a thickening of W ′
0, and the maps s′

1, t′1 of the restriction (W ′
1, R

′
1, s

′
1, t

′
1, c

′
1)

are isomorphisms, i.e., finite locally free of rank 1. Moreover, every point of U \Z1
is in t(s−1(W1)).
Assume we have found subschemes W ′

r ⊂ Wr ⊂ U for r ≤ n such that
(1) W1, . . . ,Wn are disjoint,
(2) Wr and W ′

r are R-invariant,
(3) U \ Zn ⊂

⋃
r≤n t(s−1(Wr)) set theoretically,

(4) Wr is a thickening of W ′
r,

(5) the maps s′
r, t′r of the restriction (W ′

r, R
′
r, s

′
r, t

′
r, c

′
r) are finite locally free of

rank r.
Then we set

Wn+1 = Zn \
(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

set theoretically and

W ′
n+1 = Zn \

(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

scheme theoretically. Then Wn+1 is an R-invariant open subscheme of U because
Zn+1 \ U \ Zn+1 is open in U and U \ Zn+1 is contained in the closed subset⋃

r≤n t(s−1(Wr)) we are removing by property (3) and the fact that t is a closed
morphism. It is clear that W ′

n+1 is a closed subscheme of Wn+1 with the same
underlying topological space. Finally, properties (1), (2) and (3) are clear and
property (5) follows from Lemma 14.1.
By Lemma 14.1 we have

⋂
Zr = ∅. Hence every point of U is contained in U \ Zn

for some n. Thus we see that U =
⋃

r≥1 t(s−1(Wr)) set theoretically and we see
that (2) holds. Thus W ′ ⊂ W satisfy (1), (2), (3), and (4). □

Let (U,R, s, t, c) be a groupoid scheme. Given a point u ∈ U the R-orbit of u is the
subset t(s−1({u})) of U .

Lemma 14.3.0ABB In Lemma 14.2 assume in addition that s and t are of finite pre-
sentation. Then

(1) the morphism W ′ → W is of finite presentation, and
(2) if u ∈ U is a point whose R-orbit consists of generic points of irreducible

components of U , then u ∈ W .

Proof. In this case the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 14.1 is
given by closed immersions Zk → U of finite presentation, see Divisors, Lemma 9.6.
Part (1) follows immediately from this as W ′ → W is locally given by intersecting
the openW by Zr. To see part (2) let {u1, . . . , un} be the orbit of u. Since the closed
subschemes Zk are R-invariant and

⋂
Zk = ∅, we find an k such that ui ∈ Zk and

ui ̸∈ Zk+1 for all i. The image of Zk → U and Zk+1 → U is locally constructible
(Morphisms, Theorem 22.3). Since ui ∈ U is a generic point of an irreducible
component of U , there exists an open neighbourhood Ui of ui which is contained

https://stacks.math.columbia.edu/tag/0ABB
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in Zk \ Zk+1 set theoretically (Properties, Lemma 2.2). In the proof of Lemma
14.2 we have constructed W as a disjoint union

∐
Wr with Wr ⊂ Zr−1 \ Zr such

that U =
⋃
t(s−1(Wr)). As {u1, . . . , un} is an R-orbit we see that u ∈ t(s−1(Wr))

implies ui ∈ Wr for some i which implies Ui ∩ Wr ̸= ∅ which implies r = k. Thus
we conclude that u is in

Wk+1 = Zk \
(
Zk+1 ∪

⋃
r≤k

t(s−1(Wr))
)

as desired. □

Lemma 14.4.0ABC Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t are finite and of finite presentation and U quasi-separated. Let u1, . . . , um ∈ U
be points whose orbits consist of generic points of irreducible components of U .
Then there exist R-invariant subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening of finite presentation,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally free.

Proof. Let W ′ ⊂ W ⊂ U be as in Lemma 14.2. By Lemma 14.3 we get uj ∈ W
and that W ′ → W is a thickening of finite presentation. By Limits, Lemma 11.3
it suffices to find an R-invariant affine open subscheme V ′ of W ′ containing uj

(because then we can let V ⊂ W be the corresponding open subscheme which will
be affine). Thus we may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′)
to W ′. In other words, we may assume we have a groupoid scheme (U,R, s, t, c)
whose morphisms s and t are finite locally free. By Properties, Lemma 29.1 we can
find an affine open containing the union of the orbits of u1, . . . , um. Finally, we can
apply Groupoids, Lemma 24.1 to conclude. □

The following lemma is a special case of Lemma 14.4 but we redo the argument as
it is slightly easier in this case (it avoids using Lemma 14.3).

Lemma 14.5.0ABD Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume
s, t finite, U is locally Noetherian, and u1, . . . , um ∈ U points whose orbits consist
of generic points of irreducible components of U . Then there exist R-invariant
subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally free.

Proof. Let {uj1, . . . , ujnj
} be the orbit of uj . Let W ′ ⊂ W ⊂ U be as in Lemma

14.2. Since U = t(s−1(W )) we see that at least one uji ∈ W . Since uji is a
generic point of an irreducible component and U locally Noetherian, this implies
that uji ∈ W . Since W is R-invariant, we conclude that uj ∈ W and in fact
the whole orbit is contained in W . By Cohomology of Schemes, Lemma 13.3 it
suffices to find an R-invariant affine open subscheme V ′ of W ′ containing u1, . . . , um

(because then we can let V ⊂ W be the corresponding open subscheme which will
be affine). Thus we may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′)
to W ′. In other words, we may assume we have a groupoid scheme (U,R, s, t, c)

https://stacks.math.columbia.edu/tag/0ABC
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whose morphisms s and t are finite locally free. By Properties, Lemma 29.1 we
can find an affine open containing {uij} (a locally Noetherian scheme is quasi-
separated by Properties, Lemma 5.4). Finally, we can apply Groupoids, Lemma
24.1 to conclude. □

Lemma 14.6.0ABE Let (U,R, s, t, c) be a groupoid scheme over a scheme S with s, t
integral. Let g : U ′ → U be an integral morphism such that every R-orbit in U meets
g(U ′). Let (U ′, R′, s′, t′, c′) be the restriction of R to U ′. If u′ ∈ U ′ is contained in
an R′-invariant affine open, then the image u ∈ U is contained in an R-invariant
affine open of U .

Proof. Let W ′ ⊂ U ′ be an R′-invariant affine open. Set R̃ = U ′ ×g,U,t R with
maps pr0 : R̃ → U ′ and h = s ◦ pr1 : R̃ → U . Observe that pr0 and h are
integral. It follows that W̃ = pr−1

0 (W ′) is affine. Since W ′ is R′-invariant, the
image W = h(W̃ ) is set theoretically R-invariant and W̃ = h−1(W ) set theoretically
(details omitted). Thus, if we can show that W is open, then W is a scheme and
the morphism W̃ → W is integral surjective which implies that W is affine by
Limits, Proposition 11.2. However, our assumption on orbits meeting U ′ implies
that h : R̃ → U is surjective. Since an integral surjective morphism is submersive
(Topology, Lemma 6.5 and Morphisms, Lemma 44.7) it follows that W is open. □

The following technical lemma produces “almost” invariant functions in the situa-
tion of a finite groupoid on a quasi-affine scheme.

Lemma 14.7.0ABF Let (U,R, s, t, c) be a groupoid scheme with s, t finite and of finite
presentation. Let u1, . . . , um ∈ U be points whose R-orbits consist of generic points
of irreducible components of U . Let j : U → Spec(A) be an immersion. Let I ⊂ A
be an ideal such that j(U) ∩ V (I) = ∅ and V (I) ∪ j(U) is closed in Spec(A). Then
there exists an h ∈ I such that j−1D(h) is an R-invariant affine open subscheme
of U containing u1, . . . , um.

Proof. Let u1, . . . , um ∈ V ′ ⊂ V ⊂ U be as in Lemma 14.4. Since U \V is closed in
U , j an immersion, and V (I)∪j(U) is closed in Spec(A), we can find an ideal J ⊂ I
such that V (J) = V (I) ∪ j(U \ V ). For example we can take the ideal of elements
of I which vanish on j(U \V ). Thus we can replace (U,R, s, t, c), j : U → Spec(A),
and I by (V ′, R′, s′, t′, c′), j|V ′ : V ′ → Spec(A), and J . In other words, we may
assume that U is affine and that s and t are finite locally free. Take any f ∈ I which
does not vanish at all the points in the R-orbits of u1, . . . , um (Algebra, Lemma
15.2). Consider

g = Norms(t♯(j♯(f))) ∈ Γ(U,OU )
Since f ∈ I and since V (I) ∪ j(U) is closed we see that U ∩ D(f) → D(f) is a
closed immersion. Hence fng is the image of an element h ∈ I for some n > 0.
We claim that h works. Namely, we have seen in Groupoids, Lemma 23.2 that
g is an R-invariant function, hence D(g) ⊂ U is R-invariant. Since f does not
vanish on the orbit of uj , the function g does not vanish at uj . Moreover, we have
V (g) ⊃ V (j♯(f)) and hence j−1D(h) = D(g). □

Lemma 14.8.0ABG Let (U,R, s, t, c) be a groupoid scheme. If s, t are finite, and u, u′ ∈
R are distinct points in the same orbit, then u′ is not a specialization of u.

Proof. Let r ∈ R with s(r) = u and t(r) = u′. If u ⇝ u′ then we can find a
nontrivial specialization r ⇝ r′ with s(r′) = u′, see Schemes, Lemma 19.8. Set
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u′′ = t(r′). Note that u′′ ̸= u′ as there are no specializations in the fibres of a finite
morphism. Hence we can continue and find a nontrivial specialization r′ ⇝ r′′

with s(r′′) = u′′, etc. This shows that the orbit of u contains an infinite sequence
u⇝ u′ ⇝ u′′ ⇝ . . . of specializations which is nonsense as the orbit t(s−1({u})) is
finite. □

Lemma 14.9.0ABH Let j : V → Spec(A) be a quasi-compact immersion of schemes.
Let f ∈ A be such that j−1D(f) is affine and j(V ) ∩ V (f) is closed. Then V is
affine.

Proof. This follows from Morphisms, Lemma 11.14 but we will also give a direct
proof. Let A′ = Γ(V,OV ). Then j′ : V → Spec(A′) is a quasi-compact open
immersion, see Properties, Lemma 18.4. Let f ′ ∈ A′ be the image of f . Then
(j′)−1D(f ′) = j−1D(f) is affine. On the other hand, j′(V ) ∩ V (f ′) is a subscheme
of Spec(A′) which maps isomorphically to the closed subscheme j(V ) ∩ V (f) of
Spec(A). Hence it is closed in Spec(A′) for example by Schemes, Lemma 21.11.
Thus we may replace A by A′ and assume that j is an open immersion and A =
Γ(V,OV ).
In this case we claim that j(V ) = Spec(A) which finishes the proof. If not, then we
can find a principal affine open D(g) ⊂ Spec(A) which meets the complement and
avoids the closed subset j(V ) ∩ V (f). Note that j maps j−1D(f) isomorphically
onto D(f), see Properties, Lemma 18.3. Hence D(g) meets V (f). On the other
hand, j−1D(g) is a principal open of the affine open j−1D(f) hence affine. Hence
by Properties, Lemma 18.3 again we see that D(g) is isomorphic to j−1D(g) ⊂
j−1D(f) which implies thatD(g) ⊂ D(f). This contradiction finishes the proof. □

Lemma 14.10.0ABI Let (U,R, s, t, c) be a groupoid scheme. Let u ∈ U . Assume
(1) s, t are finite morphisms,
(2) U is separated and locally Noetherian,
(3) dim(OU,u′) ≤ 1 for every point u′ in the orbit of u.

Then u is contained in an R-invariant affine open of U .

Proof. The R-orbit of u is finite. By conditions (2) and (3) it is contained in an
affine open U ′ of U , see Varieties, Proposition 42.7. Then t(s−1(U \ U ′)) is an
R-invariant closed subset of U which does not contain u. Thus U \ t(s−1(U \U ′)) is
an R-invariant open of U ′ containing u. Replacing U by this open we may assume
U is quasi-affine.
By Lemma 14.6 we may replace U by its reduction and assume U is reduced. This
means R-invariant subschemes W ′ ⊂ W ⊂ U of Lemma 14.2 are equal W ′ = W .
As U = t(s−1(W )) some point u′ of the R-orbit of u is contained in W and by
Lemma 14.6 we may replace U by W and u by u′. Hence we may assume there is a
dense open R-invariant subscheme W ⊂ U such that the morphisms sW , tW of the
restriction (W,RW , sW , tW , cW ) are finite locally free.
If u ∈ W then we are done by Groupoids, Lemma 24.1 (because W is quasi-affine so
any finite set of points of W is contained in an affine open, see Properties, Lemma
29.5). Thus we assume u ̸∈ W and hence none of the points of the orbit of u is in
W . Let ξ ∈ U be a point with a nontrivial specialization to a point u′ in the orbit
of u. Since there are no specializations among the points in the orbit of u (Lemma
14.8) we see that ξ is not in the orbit. By assumption (3) we see that ξ is a generic
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point of U and hence ξ ∈ W . As U is Noetherian there are finitely many of these
points ξ1, . . . , ξm ∈ W . Because sW , tW are flat the orbit of each ξj consists of
generic points of irreducible components of W (and hence U).

Let j : U → Spec(A) be an immersion of U into an affine scheme (this is possible as
U is quasi-affine). Let J ⊂ A be an ideal such that V (J)∩j(W ) = ∅ and V (J)∪j(W )
is closed. Apply Lemma 14.7 to the groupoid scheme (W,RW , sW , tW , cW ), the
morphism j|W : W → Spec(A), the points ξj , and the ideal J to find an f ∈ J
such that (j|W )−1D(f) is an RW -invariant affine open containing ξj for all j. Since
f ∈ J we see that j−1D(f) ⊂ W , i.e., j−1D(f) is an R-invariant affine open of U
contained in W containing all ξj .

Let Z be the reduced induced closed subscheme structure on

U \ j−1D(f) = j−1V (f).

Then Z is set theoretically R-invariant (but it may not be scheme theoretically
R-invariant). Let (Z,RZ , sZ , tZ , cZ) be the restriction of R to Z. Since Z → U is
finite, it follows that sZ and tZ are finite. Since u ∈ Z the orbit of u is in Z and
agrees with the RZ-orbit of u viewed as a point of Z. Since dim(OU,u′) ≤ 1 and
since ξj ̸∈ Z for all j, we see that dim(OZ,u′) ≤ 0 for all u′ in the orbit of u. In
other words, the RZ-orbit of u consists of generic points of irreducible components
of Z.

Let I ⊂ A be an ideal such that V (I) ∩ j(U) = ∅ and V (I) ∪ j(U) is closed. Apply
Lemma 14.7 to the groupoid scheme (Z,RZ , sZ , tZ , cZ), the restriction j|Z , the ideal
I, and the point u ∈ Z to obtain h ∈ I such that j−1D(h) ∩ Z is an RZ-invariant
open affine containing u.

Consider the RW -invariant (Groupoids, Lemma 23.2) function

g = NormsW
(t♯W (j♯(h)|W )) ∈ Γ(W,OW )

(In the following we only need the restriction of g to j−1D(f) and in this case the
norm is along a finite locally free morphism of affines.) We claim that

V = (Wg ∩ j−1D(f)) ∪ (j−1D(h) ∩ Z)

is an R-invariant affine open of U which finishes the proof of the lemma. It is set
theoretically R-invariant by construction. As V is a constuctible set, to see that it
is open it suffices to show it is closed under generalization in U (Topology, Lemma
19.10 or the more general Topology, Lemma 23.6). Since Wg ∩ j−1D(f) is open in
U , it suffices to consider a specialization u1 ⇝ u2 of U with u2 ∈ j−1D(h)∩Z. This
means that h is nonzero in j(u2) and u2 ∈ Z. If u1 ∈ Z, then j(u1) ⇝ j(u2) and
since h is nonzero in j(u2) it is nonzero in j(u1) which implies u1 ∈ V . If u1 ̸∈ Z
and also not in Wg ∩ j−1D(f), then u1 ∈ W , u1 ̸∈ Wg because the complement of
Z = j−1V (f) is contained in W ∩ j−1D(f). Hence there exists a point r1 ∈ R with
s(r1) = u1 such that h is zero in t(r1). Since s is finite we can find a specialization
r1 ⇝ r2 with s(r2) = u2. However, then we conclude that h is zero in u′

2 = t(r2)
which contradicts the fact that j−1D(h) ∩Z is R-invariant and u2 is in it. Thus V
is open.

Observe that V ⊂ j−1D(h) for our function h ∈ I. Thus we obtain an immersion

j′ : V −→ Spec(Ah)
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Let f ′ ∈ Ah be the image of f . Then (j′)−1D(f ′) is the principal open determined
by g in the affine open j−1D(f) of U . Hence (j′)−1D(f) is affine. Finally, j′(V ) ∩
V (f ′) = j′(j−1D(h)∩Z) is closed in Spec(Ah/(f ′)) = Spec((A/f)h) = D(h)∩V (f)
by our choice of h ∈ I and the ideal I. Hence we can apply Lemma 14.9 to conclude
that V is affine as claimed above. □

15. Descending ind-quasi-affine morphisms

0APG Ind-quasi-affine morphisms were defined in More on Morphisms, Section 66. This
section is the analogue of Descent, Section 38 for ind-quasi-affine-morphisms.

Let X be a quasi-separated scheme. Let E ⊂ X be a subset which is an intersection
of a nonempty family of quasi-compact opens of X. Say E =

⋂
i∈I Ui with Ui ⊂ X

quasi-compact open and I nonempty. By adding finite intersections we may assume
that for i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩ Uj . In this situation we have

(15.0.1)0APH Γ(E,F|E) = colim Γ(Ui,F|Ui
)

for any sheaf F defined on X. Namely, fix i0 ∈ I and replace X by Ui0 and
I by {i ∈ I | Ui ⊂ Ui0}. Then X is quasi-compact and quasi-separated, hence
a spectral space, see Properties, Lemma 2.4. Then we see the equality holds by
Topology, Lemma 24.7 and Sheaves, Lemma 29.4. (In fact, the formula holds for
higher cohomology groups as well if F is abelian, see Cohomology, Lemma 19.2.)

Lemma 15.1.0API Let X be an ind-quasi-affine scheme. Let E ⊂ X be an intersection
of a nonempty family of quasi-compact opens of X. Set A = Γ(E,OX |E) and
Y = Spec(A). Then the canonical morphism

j : (E,OX |E) −→ (Y,OY )

of Schemes, Lemma 6.4 determines an isomorphism (E,OX |E) → (E′,OY |E′)
where E′ ⊂ Y is an intersection of quasi-compact opens. If W ⊂ E is open in
X, then j(W ) is open in Y .

Proof. Note that (E,OX |E) is a locally ringed space so that Schemes, Lemma 6.4
applies to A → Γ(E,OX |E). Write E =

⋂
i∈I Ui with I ̸= ∅ and Ui ⊂ X quasi-

compact open. We may and do assume that for i, j ∈ I there exists a k ∈ I with
Uk ⊂ Ui ∩ Uj . Set Ai = Γ(Ui,OUi). We obtain commutative diagrams

(E,OX |E) //

��

(Spec(A),OSpec(A))

��
(Ui,OUi

) // (Spec(Ai),OSpec(Ai))

Since Ui is quasi-affine, we see that Ui → Spec(Ai) is a quasi-compact open im-
mersion. On the other hand A = colimAi. Hence Spec(A) = lim Spec(Ai) as
topological spaces (Limits, Lemma 4.6). Since E = limUi (by Topology, Lemma
24.7) we see that E → Spec(A) is a homeomorphism onto its image E′ and that
E′ is the intersection of the inverse images of the opens Ui ⊂ Spec(Ai) in Spec(A).
For any e ∈ E the local ring OX,e is the value of OUi,e which is the same as the
value on Spec(A).

https://stacks.math.columbia.edu/tag/0API
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To prove the final assertion of the lemma we argue as follows. Pick i, j ∈ I with
Ui ⊂ Uj . Consider the following commutative diagrams

Ui
//

��

Spec(Ai)

��
Ui

// Spec(Aj)

W //

��

Spec(Ai)

��
W // Spec(Aj)

W //

��

Spec(A)

��
W // Spec(Aj)

By Properties, Lemma 18.5 the first diagram is cartesian. Hence the second is
cartesian as well. Passing to the limit we find that the third diagram is cartesian,
so the top horizontal arrow of this diagram is an open immersion. □

Lemma 15.2.0APJ Suppose given a cartesian diagram

X

f

��

// Spec(B)

��
Y // Spec(A)

of schemes. Let E ⊂ Y be an intersection of a nonempty family of quasi-compact
opens of Y . Then

Γ(f−1(E),OX |f−1(E)) = Γ(E,OY |E) ⊗A B

provided Y is quasi-separated and A → B is flat.

Proof. Write E =
⋂

i∈I Vi with Vi ⊂ Y quasi-compact open. We may and do
assume that for i, j ∈ I there exists a k ∈ I with Vk ⊂ Vi ∩ Vj . Then we have
similarly that f−1(E) =

⋂
i∈I f

−1(Vi) in X. Thus the result follows from equation
(15.0.1) and the corresponding result for Vi and f−1(Vi) which is Cohomology of
Schemes, Lemma 5.2. □

Lemma 15.3 (Gabber).0APK Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering.
Let (Vi/Xi, φij) be a descent datum relative to {Xi → S}, see Descent, Definition
34.3. If each morphism Vi → Xi is ind-quasi-affine, then the descent datum is
effective.

Proof. Being ind-quasi-affine is a property of morphisms of schemes which is pre-
served under any base change, see More on Morphisms, Lemma 66.6. Hence De-
scent, Lemma 36.2 applies and it suffices to prove the statement of the lemma in
case the fpqc-covering is given by a single {X → S} flat surjective morphism of
affines. Say X = Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring
map. Let (V, φ) be a descent datum relative to X over S and assume that V → X
is ind-quasi-affine, in other words, V is ind-quasi-affine.
Let (U,R, s, t, c) be the groupoid scheme over S with U = X and R = X ×S X
and s, t, c as usual. By Groupoids, Lemma 21.3 the pair (V, φ) corresponds to
a cartesian morphism (U ′, R′, s′, t′, c′) → (U,R, s, t, c) of groupoid schemes. Let
u′ ∈ U ′ be any point. By Groupoids, Lemmas 19.2, 19.3, and 19.4 we can choose
u′ ∈ W ⊂ E ⊂ U ′ where W is open and R′-invariant, and E is set-theoretically
R′-invariant and an intersection of a nonempty family of quasi-compact opens.
Translating back to (V, φ), for any v ∈ V we can find v ∈ W ⊂ E ⊂ V with the
following properties: (a) W is open and φ(W ×S X) = X ×S W and (b) E an

https://stacks.math.columbia.edu/tag/0APJ
https://stacks.math.columbia.edu/tag/0APK
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intersection of quasi-compact opens and φ(E ×S X) = X ×S E set-theoretically.
Here we use the notation E ×S X to mean the inverse image of E in V ×S X by
the projection morphism and similarly for X ×S E. By Lemma 15.2 this implies
that φ defines an isomorphism

Γ(E,OV |E) ⊗R A = Γ(E ×S X,OV ×SX |E×SX)
→ Γ(X ×S E,OX×SV |X×SE)
= A⊗R Γ(E,OV |E)

of A ⊗R A-algebras which we will call ψ. The cocycle condition for φ translates
into the cocycle condition for ψ as in Descent, Definition 3.1 (details omitted). By
Descent, Proposition 3.9 we find an R-algebra R′ and an isomorphism χ : R′⊗RA →
Γ(E,OV |E) of A-algebras, compatible with ψ and the canonical descent datum on
R′ ⊗R A.
By Lemma 15.1 we obtain a canonical “embedding”

j : (E,OV |E) −→ Spec(Γ(E,OV |E)) = Spec(R′ ⊗R A)
of locally ringed spaces. The construction of this map is canonical and we get a
commutative diagram

E ×S X φ
//

xx

j′

))

X ×S E

&&

j′′

uu
E

j

%%

Spec(R′ ⊗R A⊗R A)

uu ))

E

j

yy
Spec(R′ ⊗R A)

))

Spec(R′ ⊗R A)

uu
Spec(R′)

where j′ and j′′ come from the same construction applied to E ×S X ⊂ V ×S X
and X×S E ⊂ X×S V via χ and the identifications used to construct ψ. It follows
that j(W ) is an open subscheme of Spec(R′ ⊗R A) whose inverse image under
the two projections Spec(R′ ⊗R A⊗R A) → Spec(R′ ⊗R A) are equal. By Descent,
Lemma 13.6 we find an open W0 ⊂ Spec(R′) whose base change to Spec(A) is j(W ).
Contemplating the diagram above we see that the descent datum (W,φ|W ×SX) is
effective. By Descent, Lemma 35.13 we see that our descent datum is effective. □
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