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1. Introduction

00AP Basic commutative algebra will be explained in this document. A reference is

[Mat70].

2. Conventions

00AQ A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring
that does not have a prime ideal. The Kronecker symbol d;; will be used. If R — S
is a ring map and q a prime of S, then we use the notation “p = RN q” to indicate
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the prime which is the inverse image of q under R — S even if R is not a subring
of S and even if R — §' is not injective.

3. Basic notions

The following is a list of basic notions in commutative algebra. Some of these
notions are discussed in more detail in the text that follows and some are defined
in the list, but others are considered basic and will not be defined. If you are
not familiar with most of the italicized concepts, then we suggest looking at an
introductory text on algebra before continuing.

(1) Ris a ring,

(2) x € R is nilpotent,

(3) = € R is a zerodivisor,

(4) x € R is a unit,
(5) e € R is an idempotent,
(6) an idempotent e € R is called trivial if e=1 or e =0,
(7) ¢ : Ry — Ry is a ring homomorphism,
(8) ¢ : R1 — Ro is of finite presentation, or Ry is a finitely presented R;-
algebra, see Definition [6.1
(9) ¢ : Ry — Ry is of finite type, or Ry is a finite type Ry -algebra, see Definition
6.1}
(10) ¢ : Ry — Ry is finite, or Ry is a finite Ry-algebra,
(11) R is a (integral) domain,
(12) R is reduced,
(13) R is Noetherian,
(14) R is a principal ideal domain or a PID,
(15) R is a Fuclidean domain,
(16) R is a unique factorization domain or a UFD,
(17) R is a discrete valuation ring or a dur,
(18) K is a field,
(19) L/K is a field extension,
(20) L/K is an algebraic field extension,
(21) {t;}icr is a transcendence basis for L over K,
(22) the transcendence degree trdeg(L/K) of L over K,
(23) the field k is algebraically closed,
(24) if L/K is algebraic, and /K an extension with  algebraically closed, then
there exists a ring map L — ) extending the map on K,
(25) I C R is an ideal,
(26) I C R is radical,
(27) if T is an ideal then we have its radical v/T,
(28) I C R is nilpotent means that I"™ = 0 for some n € N,
(29) I C R is locally nilpotent means that every element of I is nilpotent,
(30) p C R is a prime ideal,
(31) if p C R is prime and if I, J C R are ideal, and if IJ C p, then I C p or
J Cp.
(32) m C R is a mazimal ideal,
(33) any nonzero ring has a maximal ideal,
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(34) the Jacobson radical of R is rad(R) = [),,cp m the intersection of all the
maximal ideals of R,

(35) the ideal (T') generated by a subset T' C R,

(36) the quotient ring R/I,

(37) an ideal I in the ring R is prime if and only if R/I is a domain,

(38) an ideal I in the ring R is maximal if and only if the ring R/I is a field,

(39) if ¢ : Ry — Ry is a ring homomorphism, and if I C Ry is an ideal, then

@ (I) is an ideal of Ry,

(40) if ¢ : Ry — Ry is a ring homomorphism, and if I C R is an ideal, then
©(I) - Ry (sometimes denoted I - Ry, or IRy) is the ideal of Ry generated
by ¢(I),

(41) if ¢ : Ry — Ry is a ring homomorphism, and if p C Ry is a prime ideal,
then ¢ ~!(p) is a prime ideal of Ry,

(42) M is an R-module,

(43) for m € M the annihilator I = {f € R| fm =0} of m in R,

(44) N C M is an R-submodule,

(45) M is an Noetherian R-module,

(46) M is a finite R-module,

(47) M is a finitely generated R-module,

(48) M is a finitely presented R-module,

(49) M is a free R-module,

(50) if 0 - K - L — M — 0 is a short exact sequence of R-modules and K,

M are free, then L is free,

(51) if N C M C L are R-modules, then L/M = (L/N)/(M/N),

(52) S is a multiplicative subset of R,

(53) the localization R — S™'R of R,

(54) if R is a ring and S is a multiplicative subset of R then S™!R is the zero
ring if and only if S contains 0,

(55) if R is a ring and if the multiplicative subset S consists completely of
nonzerodivisors, then R — S~'R is injective,

(56) if ¢ : Ry — Ry is a ring homomorphism, and S is a multiplicative subsets
of Ry, then ¢(S) is a multiplicative subset of Rg,

(57) if S, S’ are multiplicative subsets of R, and if S'S’ denotes the set of products
S8 ={re R|3se 5,3s' € §',r = ss'} then S5’ is a multiplicative subset
of R,

(58) if S, S’ are multiplicative subsets of R, and if S denotes the image of S in

(S))"'R, then (SS")'R=15 '((S")"'R),

(59) the localization S™'M of the R-module M,

(60) the functor M ~ S~'M preserves injective maps, surjective maps, and
exactness,

(61) if S, S are multiplicative subsets of R, and if M is an R-module, then
(SS) M = S=1((S") "t M),

(62) if Ris aring, I an ideal of R, and S a multiplicative subset of R, then S~1I
is an ideal of S™!'R, and we have ST'R/S~!I = g_l(R/I), where S is the
image of S in R/I,
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(63) if R is a ring, and S a multiplicative subset of R, then any ideal I’ of S~'R
is of the form S~!I, where one can take I to be the inverse image of I’ in
R,

(64) if Ris aring, M an R-module, and S a multiplicative subset of R, then any
submodule N’ of S~ M is of the form S™'N for some submodule N ¢ M,
where one can take N to be the inverse image of N' in M,

(65) if S={1,f, f? ...} then Rf = S7'R and My = S™'M,

(66) if S=R\p={x € R|x¢p} for some prime ideal p, then it is customary

to denote Ry = S™'R and M, = S M,

(67) a local ring is a ring with exactly one maximal ideal,

(68) a semi-local ring is a ring with finitely many maximal ideals,

(69) if p is a prime in R, then R, is a local ring with maximal ideal pR,,

(70) the residue field, denoted k(p), of the prime p in the ring R is the field of

fractions of the domain R/p; it is equal to Ry, /pR, = (R\ p)"'R/p,

(71) given R and M;, My the tensor product My @ g Mo,

(72) given matrices A and B in a ring R of sizes m x n and n x m we have
det(AB) = > det(Ag)det(sB) in R where the sum is over subsets S C
{1,...,n} of size m and Ag is the m x m submatrix of A with columns
corresponding to S and gB is the m x m submatrix of B with rows corre-
sponding to .5,

(73) etc.

4. Snake lemma

The snake lemma and its variants are discussed in the setting of abelian categories
in Homology, Section

Lemma 4.1. Given a commutative diagram

XY —Z—0
Lol
0l eV —sW

of abelian groups with exact rows, there is a canonical eract sequence
Ker(a) — Ker(8) — Ker(y) — Coker(a) — Coker(8) — Coker(y)

Moreover: if X — Y is injective, then the first map is injective; if V. — W is
surjective, then the last map is surjective.

Proof. The map 0 : Ker(y) — Coker(a) is defined as follows. Take z € Ker(7).
Choose y € Y mapping to z. Then S(y) € V maps to zero in W. Hence S(y) is
the image of some u € U. Set 0z = w, the class of u in the cokernel of a.. Proof of
exactness is omitted. O

5. Finite modules and finitely presented modules

Just some basic notation and lemmas.

Definition 5.1. Let R be a ring. Let M be an R-module.

[CE56, III, Lemma
3.3]
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(1) We say M is a finite R-module, or a finitely generated R-module if there
exist n € N and z1,...,x, € M such that every element of M is an R-linear
combination of the x;. Equivalently, this means there exists a surjection
RO — M for some n € N.

(2) We say M is a finitely presented R-module or an R-module of finite presen-
tation if there exist integers n,m € N and an exact sequence

R®™ s RO s M —0

Informally, M is a finitely presented R-module if and only if it is finitely generated
and the module of relations among these generators is finitely generated as well. A
choice of an exact sequence as in the definition is called a presentation of M.

Lemma 5.2. Let R be a ring. Let a : R®™ — M and B : N — M be module
maps. If Im(a) C Im(f), then there exists an R-module map v : R®" — N such
that oo = B oy.

Proof. Let ¢; = (0,...,0,1,0,...,0) be the ith basis vector of R®". Let z; € N
be an element with a(e;) = B(x;) which exists by assumption. Set y(ay,...,a,) =
> a;xz;. By construction a = o +. [

Lemma 5.3. Let R be a ring. Let
O—>M1—>M2—>M3—)O

be a short eract sequence of R-modules.

(1) If My and M3 are finite R-modules, then My is a finite R-module.

(2) If My and M3 are finitely presented R-modules, then My is a finitely pre-
sented R-module.

(3) If My is a finite R-module, then Ms is a finite R-module.

(4) If M is a finitely presented R-module and M is a finite R-module, then
Ms is a finitely presented R-module.

(5) If M3 is a finitely presented R-module and Ms is a finite R-module, then
M is a finite R-module.

Proof. Proof of (1). If 1,...,x, are generators of M; and yi,...,ym € My are
elements whose images in M3 are generators of Ms, then x1,...,Tn,y1,.-.,Ym
generate Ms.

Part (3) is immediate from the definition.
Proof of (5). Assume Msj is finitely presented and M, finite. Choose a presentation
R®™ — R®™ — M3 — 0

By Lemma there exists a map R®"™ — M, such that the solid diagram

REBm REBn M3 0
L
\
0 M, M, Ms 0

commutes. This produces the dotted arrow. By the snake lemma (Lemma [4.1)) we
see that we get an isomorphism

Coker(R®™ — M) = Coker(R®" — M)
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In particular we conclude that Coker(R®™ — M) is a finite R-module. Since
Im(R®™ — M) is finite by (3), we see that M, is finite by part (1).

Proof of (4). Assume M, is finitely presented and M; is finite. Choose a pre-
sentation R®™ — R®" — M, — 0. Choose a surjection R®* — M,;. By
Lemma there exists a factorization R®* — R®"™ — M, of the composition
R®* — M; — M,. Then R®*+t™ — R®" — Ms; — 0 is a presentation.

Proof of (2). Assume that M; and Mj are finitely presented. The argument in the
proof of part (1) produces a commutative diagram

0 R®™ R¥mtm R®™ 0
0 M, M; M; 0

with surjective vertical arrows. By the snake lemma we obtain a short exact se-
quence

0 — Ker(R®" — M;) — Ker(R®"™ — M) — Ker(R®™ — M3) — 0

By part (5) we see that the outer two modules are finite. Hence the middle one is
finite too. By (4) we see that M5 is of finite presentation. O

Lemma 5.4. Let R be a ring, and let M be a finite R-module. There exists a
filtration by R-submodules

O=MycMyC...CM,=M
such that each quotient M;/M;_1 is isomorphic to R/I; for some ideal I; of R.

Proof. By induction on the number of generators of M. Let x1,...,2, € M be
a minimal number of generators. Let M’ = Rx; € M. Then M/M' has r — 1
generators and the induction hypothesis applies. And clearly M’ = R/I; with
L={feR]| fx; =0} O

Lemmal 5.5. Let R — S be a ring map. Let M be an S-module. If M is finite as
an R-module, then M is finite as an S-module.

Proof. In fact, any R-generating set of M is also an S-generating set of M, since
the R-module structure is induced by the image of R in S. O

6. Ring maps of finite type and of finite presentation

Definition 6.1. Let R — S be a ring map.

(1) We say R — S is of finite type, or that S is a finite type R-algebra if there
exist an n € N and an surjection of R-algebras R[x1,...,x,] — S.

(2) We say R — S is of finite presentation if there exist integers n,m € N and
polynomials fi,..., fm € R[z1,...,2,] and an isomorphism of R-algebras

R[xl,...,xn]/(fl,...,fm)%S.

Informally, R — S is of finite presentation if and only if S is finitely generated as
an R-algebra and the ideal of relations among the generators is finitely generated.
A choice of a surjection R[x1,...,2,] — S as in the definition is sometimes called
a presentation of S.


https://stacks.math.columbia.edu/tag/00KZ
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00F4

00R2

0561

0562
0563

00GJ

COMMUTATIVE ALGEBRA 10

Lemma 6.2. The notions finite type and finite presentation have the following
permanence properties.
(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given R — S" — S with R — S of finite type, then S’ — S is of finite type.
(4) Given R — S" — S, with R — S of finite presentation, and R — S’ of
finite type, then S’ — S is of finite presentation.

Proof. We only prove the last assertion. Write S = R[z1,...,2,]/(f1,.-., fm) and
S" = Rly1,...,Ya)/I. Say that the class y; of y; maps to h; mod (f1,..., fin) in S.
Then it is clear that S = S'[z1,..., 2]/ (f1,- s fm, P1 — U1y, Pa — Ta)- O

Lemmal 6.3. Let R — S be a ring map of finite presentation. For any surjection
a: R[xy,...,x,] = S the kernel of « is a finitely generated ideal in R[x1,...,x,].

Proof. Write S = R[y1,...,Ym]/(f1,---, fx). Choose g; € Rlyi,...,ym] which
are lifts of a(x;). Then we see that S = Rlx;,y;]/(fi,zi — ¢;). Choose h; €
R[z1,...,x,] such that a(h;) corresponds to y; mod (fi,..., fx). Consider the
map ¢ : Rlz;,y;] = R[x;i], ; — x;, y; — h;. Then the kernel of « is the image of
(fi,z; — gi) under ¥ and we win. O

Lemmal 6.4. Let R — S be a ring map. Let M be an S-module. Assume R — S
is of finite type and M is finitely presented as an R-module. Then M is finitely
presented as an S-module.

Proof. This is similar to the proof of part (4) of Lemmal[6.2] We may assume S =
R[zq,...,2z,])/J. Choose y1,...,ym € M which generate M as an R-module and
choose relations Y a;;y; =0, @ =1,...,t which generate the kernel of R®™ — M.
Foranyt=1,...,nand j =1,...,m write

TiYj = Z AijkYk

for some a;j, € R. Consider the S-module N generated by 1, ...,y subject to
the relations > a;;y; = 0, ¢ = 1,...,t and z;y; = > aijuye, ¢ = 1,...,n and
j=1,...,m. Then N has a presentation

Senmit g8 s N — 0

By construction there is a surjective map ¢ : N — M. To finish the proof we show
¢ is injective. Suppose z = > bjy; € N for some b; € S. We may think of b;
as a polynomial in z1,...,z, with coefficients in R. By applying the relations of
the form z;y; = > a;jxyx we can inductively lower the degree of the polynomials.
Hence we see that z = ) ¢;y; for some ¢; € R. Hence if ¢(z) = 0 then the vector
(c1,...,¢n) is an R-linear combination of the vectors (a1, . . ., @;n) and we conclude
that z = 0 as desired. (]

7. Finite ring maps
Here is the definition.

Definition 7.1. Let ¢ : R — S be a ring map. We say ¢ : R — S is finite if S is
finite as an R-module.

Lemmal 7.2. Let R — S be a finite ring map. Let M be an S-module. Then M
is finite as an R-module if and only if M is finite as an S-module.
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Proof. One of the implications follows from Lemma 5.5l To see the other assume

that M is finite as an S-module. Pick z1,...,z, € S which generate S as an
R-module. Pick y1,...,ym € M which generate M as an S-module. Then z;y;
generate M as an R-module. [

Lemmal 7.3. Suppose that R — S and S — T are finite ring maps. Then R — T
1s finite.

Proof. If t; generate T" as an S-module and s; generate S as an R-module, then
t;s; generate T' as an R-module. (Also follows from Lemma [7.2]) O

Lemma 7.4. Let ¢ : R — S be a ring map.
(1) If ¢ is finite, then ¢ is of finite type.
(2) If S is of finite presentation as an R-module, then ¢ is of finite presentation.

Proof. For (1) if z1,...,z, € S generate S as an R-module, then z1,...,z, gen-
erate S as an R-algebra. For (2), suppose that Zr;xl =0,7=1,...,mis a set
of generators of the relations among the z; when viewed as R-module generators
of S. Furthermore, write 1 = ) r;z; for some r; € R and z;2; = > rfjxk for some
rfj € R. Then

S=Rltr, ... )/ rits, 1= iy, tit; — > rhity)

as an R-algebra which proves (2). O

For more information on finite ring maps, please see Section

8. Colimits

Some of the material in this section overlaps with the general discussion on col-
imits in Categories, Sections [14] - The notion of a preordered set is defined in
Categories, Definition It is a slightly weaker notion than a partially ordered
set.

Definition 8.1. Let (I, <) be a preordered set. A system (M;, pi;) of R-modules
over I consists of a family of R-modules {M;};c; indexed by I and a family of
R-module maps {p;; : M; — M, };<; such that for all ¢ < j <k

Wi =1da, ik = Mgk © i
We say (M;, pij) is a directed system if I is a directed set.
This is the same as the notion defined in Categories, Definition [21.2] and Section

We refer to Categories, Definition for the definition of a colimit of a
diagram/system in any category.

Lemma 8.2. Let (M;, p;j) be a system of R-modules over the preordered set I.
The colimit of the system (M;, pi;) is the quotient R-module (@,;c; M;)/Q where
Q is the R-submodule generated by all elements

vi(@i) — i (paj (@)
where v; : M; — @iel M; is the natural inclusion. We denote the colimit M =

colim; M;. We denote 7 : @,;.; M; — M the projection map and ¢; = wov; : My —
M.
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Proof. This lemma is a special case of Categories, Lemma but we will also
prove it directly in this case. Namely, note that ¢; = ¢; o u;; in the above con-
struction. To show the pair (M, ¢;) is the colimit we have to show it satisfies the
universal property: for any other such pair (Y, ;) with ¢; : M; = Y, 1; = 1, 0o s,
there is a unique R-module homomorphism g : M — Y such that the following
diagram commutes:

And this is clear because we can define g by taking the map ; on the summand
M; in the direct sum €@ M;. |

Lemma 8.3. Let (M;, pij) be a system of R-modules over the preordered set I.
Assume that I is directed. The colimit of the system (M;, ;) is canonically iso-
morphic to the module M defined as follows:

(1) as a set let
= (I, ) -

where for m € M; and m’ € M; we have
m ~m' < p;j(m) = pi(m') for some j >14,i

(2) as an abelian group for m € M; and m’ € M; we define the sum of the
classes of m and m’ in M to be the class of pi;(m) + pirj(m’) where j € I
is any index with i < j and ¢ < j, and

(3) as an R-module define for m € M; and x € R the product of x and the
class of m in M to be the class of xm in M.

The canonical maps ¢; : M; — M are induced by the canonical maps M; —
Hie[ M;.
Proof. Omitted. Compare with Categories, Section (]

Lemma 8.4. Let (M;, ;) be a directed system. Let M = colim M; with u; :
M; — M. Then, p;(x;) =0 for x; € M; if and only if there exists j > i such that
pij(wi) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 8.3, [

Example 8.5. Consider the partially ordered set I = {a,b, ¢} witha < band a < ¢
and no other strict inequalities. A system (Mg, My, M, fiap, ftac) Over I consists of
three R-modules M,, My, M. and two R-module homomorphisms i, : M, — M
and pg. : My — M,.. The colimit of the system is just

M := colim;cy M; = Coker(M, — M, & M,)
where the map is pgp ® —ptqe- Thus the kernel of the canonical map M, — M is
Ker(pap) + Ker(piqe). And the kernel of the canonical map M, — M is the image

of Ker(ji4.) under the map pqp. Hence clearly the result of Lemma is false for
general systems.
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Definition 8.6. Let (M;, pti;), (Ni,vi;) be systems of R-modules over the same
preordered set I. A homomorphism of systems ® from (M;, f1;;) to (N;,v45) is by
definition a family of R-module homomorphisms ¢; : M; — N; such that ¢; o u;; =
vij o ¢; for all ¢ < 5.

This is the same notion as a transformation of functors between the associated
diagrams M : I — Modgr and N : I — Modg, in the language of categories. The
following lemma is a special case of Categories, Lemma [14.8

Lemma 8.7. Let (M;, p1i5), (Ni,vij) be systems of R-modules over the same pre-
ordered set. A morphism of systems ® = (¢;) from (M;, ;) to (N;,v45) induces a
unique homomorphism

colim ¢; : colim M; — colim NN;

such that
M; —— colim M;

bi i \Lcolim bi

N; —— colim V;
commutes for alli € I.
Proof. Write M = colim M; and N = colim N; and ¢ = colim ¢; (as yet to be
constructed). We will use the explicit description of M and N in Lemma

without further mention. The condition of the lemma is equivalent to the condition
that

@iel M; — M

ol ]

Gaiel Ny ——N

commutes. Hence it is clear that if ¢ exists, then it is unique. To see that ¢ exists,
it suffices to show that the kernel of the upper horizontal arrow is mapped by € ¢;
to the kernel of the lower horizontal arrow. To see this, let j < k and x; € M;.
Then

(EP o) (@ — mjn(z;) = 65 (x;) — bin(5)) = &5 (5) — viu(d;(x;))
which is in the kernel of the lower horizontal arrow as required. O

Lemma 8.8. Let I be a directed set. Let (L;, Nij), (M;, pij), and (N;,v;) be
systems of R-modules over I. Let ¢; : L; — M; and ¥; : M; — N; be morphisms
of systems over I. Assume that for alli € I the sequence of R-modules

L, i M; P N;

is a complex with homology H;. Then the R-modules H; form a system over I, the
sequence of R-modules

colim; L; LA colim; M; l> colim; V;
is a complex as well, and denoting H its homology we have

H = colim; H;.
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Proof. It is clear that colim; L; Lcolimi M; L>colimi N, is a complex.
For each i € I, there is a canonical R-module morphism H; — H (sending each
[m] € H; = Ker(1;)/ Im(y;) to the residue class in H = Ker(v)/Im(p) of the image
of m in colim; M;). These give rise to a morphism colim; H; — H. It remains to
show that this morphism is surjective and injective.

We are going to repeatedly use the description of colimits over I as in Lemma [8.3
without further mention. Let h € H. Since H = Ker(v))/Im(yp) we see that h is
the class mod Im(p) of an element [m] in Ker(¢) C colim; M;. Choose an ¢ such
that [m] comes from an element m € M;. Choose a j > ¢ such that v;;(¢;(m)) =0
which is possible since [m] € Ker(¢). After replacing ¢ by j and m by p,;(m) we
see that we may assume m € Ker(¢);). This shows that the map colim; H; — H is
surjective.

Suppose that h; € H; has image zero on H. Since H; = Ker(v;)/Im(yp;) we may
represent h; by an element m € Ker(¢);) C M;. The assumption on the vanishing of
h; in H means that the class of m in colim; M; lies in the image of ¢. Hence there
exists a j > ¢ and an | € L; such that ¢;(I) = p;;(m). Clearly this shows that the
image of h; in H; is zero. This proves the injectivity of colim; H; — H. O

Example| 8.9. Taking colimits is not exact in general. Consider the partially
ordered set I = {a,b,c} with a < b and a < ¢ and no other strict inequalities, as in
Example[8.5] Consider the map of systems (0,Z,Z,0,0) — (Z,Z,Z,1,1). From the
description of the colimit in Example [85] we see that the associated map of colimits
is not injective, even though the map of systems is injective on each object. Hence
the result of Lemma [8.8]is false for general systems.

Lemma 8.10. LetZ be an index category satisfying the assumptions of Categories,
Lemma [19.8, Then taking colimits of diagrams of abelian groups over I is ezact
(i.e., the analogue of Lemma holds in this situation).

Proof. By Categories, Lemma we may write Z = [];.;Z; with each Z; a
filtered category, and J possibly empty. By Categories, Lemma [21.5] taking colimits
over the index categories Z; is the same as taking the colimit over some directed set.
Hence Lemma [8.8| applies to these colimits. This reduces the problem to showing
that coproducts in the category of R-modules over the set J are exact. In other
words, exact sequences L; — M; — N; of R modules we have to show that

69jeJ Lj— @jeJ M; — @jeJ N;

is exact. This can be verified by hand, and holds even if J is empty. O

9. Localization

Definition 9.1. Let R be a ring, S a subset of R. We say S is a multiplicative
subset of Rif 1 € S and S is closed under multiplication, i.e., s,s’ € S = ss’ € S.

Given a ring A and a multiplicative subset S, we define a relation on A x S as
follows:

(z,8) ~ (y,t) & Ju € S such that (xt —ys)u =0
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It is easily checked that this is an equivalence relation. Let z/s (or £) be the
equivalence class of (x,s) and S™!A be the set of all equivalence classes. Define
addition and multiplication in S~1A as follows:

x/s+y/t=(zt+ys)/st, z/s-y/t=uxy/st
One can check that S~ A becomes a ring under these operations.

Definition 9.2. This ring is called the localization of A with respect to S.

We have a natural ring map from A to its localization S™'A,
A— STMA, /1

which is sometimes called the localization map. In general the localization map is
not injective, unless S contains no zerodivisors. For, if /1 = 0, then there is a
u € S such that zu = 0 in A and hence z = 0 since there are no zerodivisors in S.
The localization of a ring has the following universal property.

Proposition 9.3. Let f: A — B be a ring map that sends every element in S to
a unit of B. Then there is a unique homomorphism g : S~'A — B such that the
following diagram commutes.

A ! B

oA

S—tA

Proof. Existence. We define a map g as follows. For z/s € S71A, let g(z/s) =
f(x)f(s)~! € B. It is easily checked from the definition that this is a well-defined
ring map. And it is also clear that this makes the diagram commutative.

Uniqueness. We now show that if ¢ : S7'A — B satisfies ¢/(x/1) = f(z), then
g = ¢'. Hence f(s) = ¢'(s/1) for s € S by the commutativity of the diagram.
But then ¢’(1/s)f(s) = 1 in B, which implies that ¢’(1/s) = f(s)~! and hence
g'(x/s) =g'(x/1)g'(1/s) = f(x)f(s)~" = g(x/s). O

Lemma 9.4. The localization S™'A is the zero ring if and only if 0 € S.

Proof. If 0 € S, any pair (a,s) ~ (0,1) by definition. If 0 ¢ S, then clearly
1/1#0/1in STLA. O

Lemma 9.5. Let R be a ring. Let S C R be a multiplicative subset. The category
of ST'R-modules is equivalent to the category of R-modules N with the property
that every s € S acts as an automorphism on N.

Proof. The functor which defines the equivalence associates to an S~!R-module
M the same module but now viewed as an R-module via the localization map
R — S7'R. Conversely, if N is an R-module, such that every s € S acts via an
automorphism sy, then we can think of N as an S~!R-module by letting x/s act
via T o s&l. We omit the verification that these two functors are quasi-inverse to
each other. g
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The notion of localization of a ring can be generalized to the localization of a
module. Let A be a ring, S a multiplicative subset of A and M an A-module. We
define a relation on M x S as follows

(m,s) ~ (n,t) < 3u € S such that (mt —ns)u =0
This is clearly an equivalence relation. Denote by m/s (or ™) be the equivalence

class of (m,s) and S M be the set of all equivalence classes. Define the addition
and scalar multiplication as follows

m/s+n/t=(mt+ns)/st, m/s-n/t=mn/st
It is clear that this makes S™'M an S—!'A-module.
Definition 9.6. The S~!A-module S™'M is called the localization of M at S.

Note that there is an A-module map M — S~ M, m + m/1 which is sometimes
called the localization map. It satisfies the following universal property.

Lemma 9.7. Let R be a ring. Let S C R a multiplicative subset. Let M, N be
R-modules. Assume all the elements of S act as automorphisms on N. Then the
canonical map

Homp(S™*M, N) — Hompg (M, N)

induced by the localization map, is an isomorphism.

Proof. It is clear that the map is well-defined and R-linear. Injectivity: Let a €
Hompz(S~'M, N) and take an arbitrary element m/s € S™'M. Then, since s -
a(m/s) = a(m/1), we have a(m/s) = s~1(a(m/1)), so a is completely determined
by what it does on the image of M in S™'M. Surjectivity: Let 8 : M — N be a
given R-linear map. We need to show that it can be "extended' to S~™!M. Define
a map of sets
M xS — N, (m,s)— s 18(m)

Clearly, this map respects the equivalence relation from above, so it descends to a
well-defined map o : S™'M — N. It remains to show that this map is R-linear, so
take 7,7’ € R as well as s,s’ € S and m,m’ € M. Then

alfr-m/s+r"-m'/s)y=a((r-s" - m+r"-s-m')/(ss))
= (ss)'B(r-s-m+r-s-m)
= (ss')7H(r - 8'B(m) + 1" sB(m"))
=ra(m/s) +r'a(m'/s")
and we win. O

Example| 9.8. Let A be a ring and let M be an A-module. Here are some
important examples of localizations.

(1) Given p a prime ideal of A consider S = A\p. It is immediately checked that
S is a multiplicative set. In this case we denote A, and M, the localization
of A and M with respect to S respectively. These are called the localization
of A, resp. M at p.

(2) Let f € A. Consider S = {1, f, f2,...}. This is clearly a multiplicative
subset of A. In this case we denote Ay (resp. My) the localization S~ A
(resp. STIM). This is called the localization of A, resp. M with respect to
f. Note that Ay = 0 if and only if f is nilpotent in A.
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(3) Let S = {f € A | f is not a zerodivisor in A}. This is a multiplicative
subset of A. In this case the ring Q(A) = S7'A is called either the total
quotient ring, or the total ring of fractions of A.

(4) If A is a domain, then the total quotient ring Q(A) is the field of fractions
of A. Please see Fields, Example [3.4

Lemmal 9.9. Let R be a ring. Let S C R be a multiplicative subset. Let M be an
R-module. Then

S_lM = COlimfes Mf
where the preorder on S is given by f > ' < f = f'f" for some f"” € R in which
case the map My — My is given by m/(f')¢ — m(f")¢/fe.
Proof. Omitted. Hint: Use the universal property of Lemma O

In the following paragraph, let A denote a ring, and M, N denote modules over A.
If S and S’ are multiplicative sets of A, then it is clear that

SS'={ss':s5€ 8, §e8s'}
is also a multiplicative set of A. Then the following holds.
Proposition 9.10. Let S be the image of S in S’"1 A, then (SS’) "1 A is isomorphic
to 5 (S'TLA).

Proof. The map sending z € A to x/1 € (55’)71A induces a map sending z/s €
S 1Atox/s € (§5")"LA, by universal property. The image of the elements in S are

invertible in (SS’)~*A. By the universal property we get a map f : ?71(5’ “14) —
(8S")~LA which maps (z/t')/(s/s") to (z/t') - (s/s')7L.

On the other hand, the map from A to ?71(5’*1/1) sending x € A to (x/1)/(1/1)
also induces a map g : (SS')"'A — §_1(S’*1A) which sends z/ss” to (x/s")/(s/1),
by the universal property again. It is immediately checked that f and g are inverse
to each other, hence they are both isomorphisms. O

For the module M we have

Proposition 9.11. View S'~'M as an A-module, then S=1(S’~t M) is isomorphic
to (SS")"1M.

Proof. Note that given a A-module M, we have not proved any universal property
for S~'M. Hence we cannot reason as in the preceding proof; we have to construct
the isomorphism explicitly.

We define the maps as follows

z/s

f:S8 NS M) — (SS") ' M, . > x/ss'

x/s

g:(SS) M — STHSTI M), x/t— for some s € S,s" € ', and t = 55

We have to check that these homomorphisms are well-defined, that is, independent
the choice of the fraction. This is easily checked and it is also straightforward to
show that they are inverse to each other. [
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Ifu: M — N is an A homomorphism, then the localization indeed induces a
well-defined S~'A homomorphism S~!u : S™'M — S~IN which sends z/s to
u(z)/s. It is immediately checked that this construction is functorial, so that S~*
is actually a functor from the category of A-modules to the category of S—'A-
modules. Moreover this functor is exact, as we show in the following proposition.

Proposition 9.12. Let L = M % N be an exact sequence of R-modules. Then
S™IL — S~'M — S7IN is also exact.

Proof. First it is clear that S™'L — S™'M — S™'N is a complex since lo-
calization is a functor. Next suppose that z/s maps to zero in S™!N for some
x/s € STIM. Then by definition there is a t € S such that v(zt) = v(x)t = 0 in
M, which means zt € Ker(v). By the exactness of L - M — N we have xt = u(y)
for some y in L. Then z/s is the image of y/st. This proves the exactness. (I

Lemma 9.13. Localization respects quotients, i.e. if N is a submodule of M, then
S™HM/N)~ (S~M)/(S7IN).
Proof. From the exact sequence

0—N—M-—M/N—20

we have

0— S!N—S'M— S HM/N)—0
The corollary then follows. O
If, in the preceding Corollary, we take N = I and M = A for an ideal I of A, we
see that S™*A/S™1I ~ S71(A/I) as A-modules. The next proposition shows that
they are isomorphic as rings.
Proposition 9.14. Let I be an ideal of A, S a multiplicative set of A. Then S™'I
is an ideal of ST'A and §_1(A/I) is isomorphic to STYA/STI, where S is the
image of S in A/I.
Proof. The fact that S~'I is an ideal is clear since I itself is an ideal. Define

FiS7'A—T A/, z/s—T)3

where T and § are the images of z and s in A/I. We shall keep similar notations in
this proof. This map is well-defined by the universal property of S~*A, and S~'I
is contained in the kernel of it, therefore it induces a map

T:SMA/STH — S NAJD), /s T3
On the other hand, the map A — S~1A/S~!I sending = to 7/1 induces a map

AJI — S~1A/S~'I sending T to /1. The image of S is invertible in S~*A/S~'1,
thus induces a map

g:5 A/ — 5714 s7 T, L)

wl | 8

by the universal property. It is then clear that f and g are inverse to each other,
hence are both isomorphisms. O

We now consider how submodules behave in localization.


https://stacks.math.columbia.edu/tag/00CS
https://stacks.math.columbia.edu/tag/02C8
https://stacks.math.columbia.edu/tag/00CT

00CU

02C9

0581

0582

0583

COMMUTATIVE ALGEBRA 19

Lemma 9.15. Any submodule N’ of S~'M is of the form SN for some N C M.
Indeed one can take N to be the inverse image of N’ in M.

Proof. Let N be the inverse image of N’ in M. Then one can see that S™*N D N'.
To show they are equal, take z/s in S™'N, where s € S and x € N. This yields
that /1 € N’. Since N’ is an S~!R-submodule we have z/s = z/1-1/s € N'.
This finishes the proof. O

Taking M = A and N = [ an ideal of A, we have the following corollary, which can
be viewed as a converse of the first part of Proposition

Lemma 9.16. Each ideal I' of S™' A takes the form S™'I, where one can take I
to be the inverse image of I' in A.

Proof. Immediate from Lemma [0.15] |

10. Internal Hom
If R is a ring, and M, N are R-modules, then
Homp(M,N)={p: M — N}

is the set of R-linear maps from M to N. This set comes with the structure of an
abelian group by setting (o+v¢)(m) = @(m)+¢(m), as usual. In fact, Homp (M, N)
is also an R-module via the rule (z¢)(m) = zp(m) = @(zm).

Given maps a : M — M’ and b: N — N’ of R-modules, we can pre-compose and
post-compose homomorphisms by a and b. This leads to the following commutative
diagram

Homp(M', N) THomR(M’,N’)

_oal l_oa

Homp (M, N) —°"> Homp (M, N')
In fact, the maps in this diagram are R-module maps. Thus Homp defines an
additive functor

Modz” x Modg — Modg, (M, N)+— Homg(M,N)

Lemma 10.1. FEzactness and Hompg. Let R be a ring.

(1) Let My — My — M3 — 0 be a complex of R-modules. Then My — My —
Mz — 0 is exact if and only if 0 — Hompg(Ms, N) — Hompg(Msy, N) —
Homp(My, N) is exact for all R-modules N.

(2) Let 0 —» My — My — Ms be a complex of R-modules. Then 0 — M; —
My — Ms is exact if and only if 0 — Hompg (N, My) — Hompg(N, Ms) —
Homp(N, Ms3) is exact for all R-modules N.

Proof. Omitted. |

Lemma 10.2. Let R be a ring. Let M be a finitely presented R-module. Let N
be an R-module.

(1) For f € R we have Homgr(M, N)y = Hompg, (M, Ny) = Hompg(My, Ny),
(2) for a multiplicative subset S of R we have

S~ Homp(M,N) = Homg-15(S™'M,S™'N) = Homg(S™*M,S™'N).
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Proof. Part (1) is a special case of part (2). The second equality in (2) follows
from Lemma [9.7] Choose a presentation

@j:h.,m R — @i:L.H,n R— M — 0.
By Lemma this gives an exact sequence

0 — Homp(M, N) — @Zln N — @jzl,...,m N.
Inverting S and using Proposition we get an exact sequence

—1 -1 -1

0 — S~ Homp(M,N) — @izlmn STIN — @j:l,...,m STIN
and the result follows since S™'M sits in an exact sequence
-1 -1 -1

@jzl,...,m SR — 691:1,...,71 STR—S "M—=0

which induces (by Lemma [10.1)) the exact sequence
-1 -1 -1 -1
0 — Homg-1(S™*M,S7'N) — @_Lm’n STIN — EBj:l SN

)

which is the same as the one above. O

11. Characterizing finite and finitely presented modules

0G8M Given a module N over a ring R, you can characterize whether or not IV is a finite
module or a finitely presented module in terms of the functor Homp (N, —).

0G8N |Lemma 11.1. Let R be a ring. Let N be an R-module. The following are equiv-
alent
(1) N is a finite R-module,
(2) for any filtered colimit M = colim M; of R-modules the map colim Homg (N, M;) —
Hompg (N, M) is injective.

Proof. Assume (1) and choose generators 1, ..., z,, for N. If N — M, is a module
map and the composition N — M; — M is zero, then because M = colim; >; M
for each j € {1,...,m} we can find a ¢’ > ¢ such that =; maps to zero in M;,. Since
there are finitely many z; we can find a single ¢’ which works for all of them. Then
the composition N — M; — M, is zero and we conclude the map is injective, i.e.,
part (2) holds.

Assume (2). For a finite subset E C N denote Ny C N the R-submodule generated
by the elements of E. Then 0 = colim N/Ng is a filtered colimit. Hence we see
that id : N — N maps into Ng for some F, i.e., N is finitely generated. O

For purposes of reference, we define what it means to have a relation between
elements of a module.

07N8 |Definition/11.2. Let R be a ring. Let M be an R-module. Let n > 0 and z; € M
for i = 1,...,n. A relation between x1,...,x, in M is a sequence of elements
fi,....fn € Rsuch that 37,  fiz;=0.

00HA Lemmal11.3. Let R be a ring and let M be an R-module. Then M is the colimit of
a directed system (M;, pi;) of R-modules with all M; finitely presented R-modules.
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Proof. Consider any finite subset S C M and any finite collection of relations F
among the elements of S. So each s € S corresponds to x; € M and each e € F
consists of a vector of elements f. s € R such that > f. ;x5 = 0. Let Mg g be the
cokernel of the map

R#E — R#S, (ge)eeE — (Z gefe,s)s€S~

There are canonical maps Mg r — M. If S C S" and if the elements of E corre-
spond, via this map, to relations in E’, then there is an obvious map Mg g — Mg/ g
commuting with the maps to M. Let I be the set of pairs (S, F') with ordering by
inclusion as above. It is clear that the colimit of this directed system is M. ([

0G8P Lemma 11.4. Let R be a ring. Let N be an R-module. The following are equiv-
alent

(1) N is a finitely presented R-module,
(2) for any filtered colimit M = colim M; of R-modules the map colim Homg(N, M;) —
Hompg (N, M) is bijective.

Proof. Assume (1) and choose an exact sequence F_; — Fy — N — 0 with F;
finite free. Then we have an exact sequence

0 — Hompg (N, M) — Hompg(Fy, M) — Homp(F_1, M)

functorial in the R-module M. The functors Hompg(F;, M) commute with filtered
colimits as Hompg(R®", M) = M®". Since filtered colimits are exact (Lemma [3.8])
we see that (2) holds.

Assume (2). By Lemma we can write N = colim V; as a filtered colimit such
that N; is of finite presentation for all i. Thus idy factors through N; for some 1.
This means that N is a direct summand of a finitely presented R-module (namely
N;) and hence finitely presented. ([

12. Tensor products

0oCcv

00CW |Definition 12.1. Let R be a ring, M, N, P be three R-modules. A mapping
f:MxN — P (where M x N is viewed only as Cartesian product of two R-
modules) is said to be R-bilinear if for each € M the mapping y — f(x,y) of N
into P is R-linear, and for each y € N the mapping x — f(z,y) is also R-linear.

00CX |Lemma 12.2. Let M, N be R-modules. Then there exists a pair (T,g) where T
is an R-module, and g : M x N — T an R-bilinear mapping, with the following
universal property: For any R-module P and any R-bilinear mapping f : M x N —
P, there exists a unique R-linear mapping f : T — P such that f = fog. In other
words, the following diagram commutes:

M x N

N

T

Moreover, if (T, g) and (T',g’) are two pairs with this property, then there exists a
unique isomorphism j : T — T" such that jog=g¢'.
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The R-module T" which satisfies the above universal property is called the tensor
product of R-modules M and N, denoted as M ®p N.

Proof. We first prove the existence of such R-module T'. Let M, N be R-modules.
Let T be the quotient module P/Q, where P is the free R-module RM*N) and Q
is the R-module generated by all elements of the following types: (x € M,y € N)

(@ +2,y) = (z,y) — (@,y),
(x,y + y/) - (ﬂl‘,y) - (mvy/)7
(axa y) - a(xa )7

(1‘, ay) - a‘(xvy)

Let m: M x N — T denote the natural map. This map is R-bilinear, as implied
by the above relations when we check the bilinearity conditions. Denote the image
m(x,y) = © ® y, then these elements generate T. Now let f : M x N — P be
an R-bilinear map, then we can define f' : T — P by extending the mapping
fl(x®y) = f(z,y). Clearly f = f’ om. Moreover, f’ is uniquely determined by the
value on the generating sets {x ® y : @ € M,y € N}. Suppose there is another pair
(T',¢g') satistying the same properties. Then there is a unique j : T'— T” and also
j' T — T such that ¢ = jog, g = j og’. But then both the maps (jo0j')og
and g satisfies the universal properties, so by uniqueness they are equal, and hence
j' o7 is identity on T'. Similarly (j'o0j)og = ¢’ and joj’ is identity on T". So j is
an isomorphism. O

Lemma 12.3. Let M, N, P be R-modules, then the bilinear maps

(z,y) >y
(x4+y,2)—2rRz+y®z
(r,x) — rx

induce unique isomorphisms

M®r N - N ®gr M,
(M@ N)®r P — (M &g P)® (N ®g P),
R®pr M —- M

Proof. Omitted. (|

We may generalize the tensor product of two R-modules to finitely many R-modules,
and set up a correspondence between the multi-tensor product with multilinear
mappings. Using almost the same construction one can prove that:

Lemma 12.4. Let My,..., M, be R-modules. Then there exists a pair (T,g)
consisting of an R-module T and an R-multilinear mapping g : My x ... x M, = T
with the universal property: For any R-multilinear mapping f : My X ... x M, — P
there exists a unique R-module homomorphism f' : T — P such that f'og = f.
Such a module T is unique up to unique isomorphism. We denote it Mi®g...QrM,
and we denote the universal multilinear map (m1,...,m;) —» M1 & ... @ m,.

Proof. Omitted. O
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00D0 Lemma 12.5. The homomorphisms
(Mgr N)@rP > MerNQrP — M®r (N ®gP)

such that f((z@yY)®z2) = 2QYRz and g(zRY®z2) = 2@ (yRz), v € M,y € N,z € P
are well-defined and are isomorphisms.

Proof. We shall prove f is well-defined and is an isomorphism, and this proof
carries analogously to ¢g. Fix any z € P, then the mapping (z,y) — 2 Qy ®
z, x € M,y € N, is R-bilinear in x and y, and hence induces homomorphism
f:  M®N — M ®N ® P which sends f,(z ® y) = 2 ® y ® z. Then consider
(M@ N)x P— M ® N ® P given by (w,z) — f.(w). The map is R-bilinear and
thus induces f: (M @gr N)@r P > M @r N@r P and f(zQy)®z2) =@y 2.
To construct the inverse, we note that the map 7 : M X Nx P - (M @ N)® P is
R-trilinear. Therefore, it induces an R-linear map h: M@ N®@ P - (M @ N)® P
which agrees with the universal property. Here we see that h(z®@y®z2) = (zQy)®z.
From the explicit expression of f and h, foh and ho f are identity maps of M @ N® P
and (M ® N) ® P respectively, hence f is our desired isomorphism. [

Doing induction we see that this extends to multi-tensor products. Combined with
Lemma [12.3| we see that the tensor product operation on the category of R-modules
is associative, commutative and distributive.

00D1 |Definition 12.6. An abelian group N is called an (A, B)-bimodule if it is both an
A-module and a B-module, and the actions A — End(M) and B — End(M) are
compatible in the sense that (ax)b = a(xb) for all a € A,b € B,z € N. Usually we
denote it as 4 Np.

00D2 Lemma 12.7. For A-module M, B-module P and (A, B)-bimodule N, the modules
(M®aN)®p P and M ®4 (N ®pg P) can both be given (A, B)-bimodule structure,
and moreover
(M®sN)®@pP=2M®y (N®p P).

Proof. A priori M ® 4 N is an A-module, but we can give it a B-module structure
by letting

(zy)b=z®yb, z€MyecNbeB
Thus M ®4 N becomes an (A, B)-bimodule. Similarly for N ® g P, and thus for
(M ®s N)®p Pand M ®4 (N ®p P). By Lemma these two modules are
isomorphic as both as A-module and B-module via the same mapping. [l

00DE |Lemma 12.8. For any three R-modules M, N, P,
Homp(M ®r N, P) 2 Hompr(M,Homg(N, P))

Proof. An R-linear map f € Homg(M ®g N, P) corresponds to an R-bilinear map
f:Mx N — P. For each x € M the mapping y — f(z,y) is R-linear by the
universal property. Thus f corresponds to a map ¢ : M — Homp (N, P). This
map is R-linear since

drax +y)(2) = flax +y,2) = af (2,2) + f(y,2) = (ads(z) + ¢ (y))(2),
foralla € R,x € M,y € M and z € N. Conversely, any f € Homp (M, Homg(N, P))
defines an R-bilinear map M x N — P, namely (z,y) — f(x)(y). So this is a nat-

ural one-to-one correspondence between the two modules Homgr(M ®r N, P) and
Hompg(M,Hompg (N, P)). O


https://stacks.math.columbia.edu/tag/00D0
https://stacks.math.columbia.edu/tag/00D1
https://stacks.math.columbia.edu/tag/00D2
https://stacks.math.columbia.edu/tag/00DE

00DD

00DF

00DG

COMMUTATIVE ALGEBRA 24

Lemma 12.9 (Tensor products commute with colimits). Let (M;, p1;;) be a system
over the preordered set I. Let N be an R-module. Then

colim(M; ® N) = (colim M;) ® N.

Moreover, the isomorphism is induced by the homomorphisms pu; ® 1 : M; @ N —
M ® N where M = colim; M; with natural maps p; : M; — M.

Proof. First proof. The functor M’ — M’ ®r N is left adjoint to the functor
N’ + Hompg(N,N’) by Lemma [12.8 Thus M’ — M’ ®p N commutes with all
colimits, see Categories, Lemma [24.5

Second direct proof. Let P = colim(M; ® N) with coprojections \; : M; ® N — P.
Let M = colim M; with coprojections p; : M; — M. Then for all ¢ < j, the
following diagram commutes:

M; @ N—— MR N

pi®1
Mj@li lid

Mo N2 Mo N

By Lemma these maps induce a unique homomorphism v : P - M ® N such
that p; ® 1 =1 o \;.
To construct the inverse map, for each ¢ € I, there is the canonical R-bilinear
mapping g; : M; X N — M; ® N. This induces a unique mapping ¢ : M x N — P
such that ¢o(u; x 1) = \;og;. It is R-bilinear. Thus it induces an R-linear mapping
¢: M ®N — P. From the commutative diagram below:

M;x N—2>M; @ N — M; ® N

1

i X id Ai i ®id
® W )

M x N P M@N—-P

we see that 1 o (;AS = g, the canonical R-bilinear mapping g : M x N - M ® N. So
1 o ¢ is identity on M ® N. From the right-hand square and triangle, ¢ o % is also
identity on P. O

Lemma 12.10. Let

My, LMy % My — 0

be an exact sequence of R-modules and homomorphisms, and let N be any R-
module. Then the sequence

(12.10.1) Mo N L Mye N 225 My@ N — 0

is exact. In other words, the functor — ®gr N is right exact, in the sense that
tensoring each term in the original right exact sequence preserves the exactness.

Proof. We apply the functor Hom(—, Hom(N, P)) to the first exact sequence. We
obtain

0 — Hom(Mj3, Hom(N, P)) — Hom(Ms, Hom(N, P)) — Hom(M;, Hom(N, P))
By Lemma [I2.8] we have
0 — Hom(M3 ® N, P) — Hom(M; ® N, P) — Hom(M; ® N, P)
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Using the pullback property again, we arrive at the desired exact sequence. O

Remark| 12.11. However, tensor product does NOT preserve exact sequences in
general. In other words, if My — My — M3 is exact, then it is not necessarily true
that M7, @ N — My ® N — M3 ® N is exact for arbitrary R-module N.

Example| 12.12. Consider the injective map 2 : Z — Z viewed as a map of
Z-modules. Let N = Z/2. Then the induced map Z ® Z/2 — Z ® Z/2 is NOT
injective. This is because for z ® y € Z ® Z/2,

2e1)(zRy)=2zQy=2R2y=20=0
Therefore the induced map is the zero map while Z ® N # 0.

Remark| 12.13. For R-modules N, if the functor — ® g N is exact, i.e. tensoring
with IV preserves all exact sequences, then N is said to be flat R-module. We will
discuss this later in Section

Lemma 12.14. Let R be a ring. Let M and N be R-modules.

(1) If N and M are finite, then so is M @ g N.
(2) If N and M are finitely presented, then so is M ®r N.

Proof. Suppose M is finite. Then choose a presentation 0 — K — R®"* — M — 0.
This gives an exact sequence K g N — N®* — M ®r N — 0 by Lemma
We conclude that if N is finite too then M ®pg N is a quotient of a finite module,
hence finite, see Lemma [5.3] Similarly, if both N and M are finitely presented,
then we see that K is finite and that M ®r N is a quotient of the finitely presented

module N®" by a finite module, namely K ® g N, and hence finitely presented, see
Lemma 5.3 O

Lemma 12.15. Let M be an R-module. Then the S™'R-modules S™'M and
ST'R®rM are canonically isomorphic, and the canonical isomorphism f : ST'R®g
M — S7'M is given by

f((a/s)®@m) =am/s,Ya € R,me M,s €S

Proof. Obviously, the map f': SR x M — S='M given by f'(a/s,m) = am/s
is bilinear, and thus by the universal property, this map induces a unique S~!R-
module homomorphism f : ST'R ®g M — S™'M as in the statement of the
lemma. Actually every element in S~1M is of the form m/s, m € M,s € S and
every element in ST'R ®p M is of the form 1/s ® m. To see the latter fact, write
an element in S™'R ®@p M as

ag arly 1 1
DL BME=) T @M= S @) atumg = @m
k k

Where m = 3", aptpmy. Then it is obvious that f is surjective, and if f(f @ m) =
m/s = 0 then there exists ¢’ € S with tm = 0 in M. Then we have

1 1 1
-—®@m=—Qtm=—80=0
S st st

Therefore f is injective. (I

Lemmal 12.16. Let M, N be R-modules, then there is a canonical S™'R-module
isomorphism f: ST'M ®g-1r STIN — S7H(M ®r N), given by

f((m/s) @ (n/t)) = (m @ n)/st
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Proof. We may use Lemma and Lemma [12.15| repeatedly to see that these
two S~!R-modules are isomorphic, noting that S™1R is an (R, S~!R)-bimodule:

ST MorN)=2S 'Rz (Mg N)
~ S M er N
~ (ST'M ®g-1r ST'R) ®r N
> S M ®g-15 (ST'R®R N)
~ S M ®g-15 ST'N

This isomorphism is easily seen to be the one stated in the lemma. (I

13. Tensor algebra

Let R be a ring. Let M be an R-module. We define the tensor algebra of M over
R to be the noncommutative R-algebra

T(M) = Ta(M) =@ _ T"(M)

with TO(M) = R, T"(M) = M, T*(M) = M @ M, T*(M) = M @r M @5 M,
and so on. Multiplication is defined by the rule that on pure tensors we have

n>0

(11 R22®..0T,) Y1 QYR ...Q0UR) =1 RT2Q ... T, QY1 QY2 ® ... QY
and we extend this by linearity.

We define the exterior algebra A(M) of M over R to be the quotient of T(M) by
the two sided ideal generated by the elements r® x € TQ(M ). The image of a pure
tensor 1 ® ... ® x, in A"(M) is denoted x1 A ... A x,. These elements generate
A"(M), they are R-linear in each x; and they are zero when two of the z; are equal
(i.e., they are alternating as functions of z1,z2,...,2,). The multiplication on
A(M) is graded commutative, i.e., every x € M and y € M satisfy z Ay = —y A x.

An example of this is when M = Rz & ... ® Rx, is a finite free module. In this
case A(M) is free over R with basis the elements

xil/\.../\xir
with0<r<nand1<i <ig<...<i. <n.

We define the symmetric algebra Sym(M) of M over R to be the quotient of T(M)
by the two sided ideal generated by the elements z @ y —y @ 2 € T?(M). The
image of a pure tensor 1 ® ... ® z,, in Sym” (M) is denoted just z; ...z,. These
elements generate Sym™ (M), these are R-linear in each a; and a7 ...2, = 2} ...z}
if the sequence of elements 1, ..., 2, is a permutation of the sequence zi,..., /.
Thus we see that Sym(M) is commutative.

An example of this is when M = Rz ® ... ® Rx, is a finite free module. In this
case Sym(M) = R[z1,...,x,] is a polynomial algebra.

Lemmal 13.1. Let R be a ring. Let M be an R-module. If M is a free R-module,
so is each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. O


https://stacks.math.columbia.edu/tag/00DN

00DO

00DP

0H1C

00DQ

COMMUTATIVE ALGEBRA 27

Lemma 13.2. Let R be a ring. Let My — My — M — 0 be an exact sequence of
R-modules. There are exact sequences

My @r Sym" ™ (My) — Sym™(M;) — Sym™(M) — 0
and similarly
My ®@p A" "H(My) = A*(My) = A™(M) — 0
Proof. Omitted. U
Lemma 13.3. Let R be a ring. Let M be an R-module. Let x;, i € I be a given

system of generators of M as an R-module. Let n > 2. There exists a canonical
exact sequence

b Pp e H prim) - (M) - AN (M) =0
1<j1<g2<nii,i2€l 1<j1<g2<n i€l

where the pure tensor my ® ... Q@ my_o in the first summand maps to

m1®...®xil®...®xi2®...®mn,2

with x;y and x;, occupying slots j1 and jz in the tensor

+ m1®...®xiz®...®xil®...®mn_2

with x;, and x;; occupying slots j1 and jz in the tensor
and mi; ® ... ® my_o in the second summand maps to

m1®®xl®®xl®®mn_2

with z; and x; occupying slots j1 and ja in the tensor
There is also a canonical exact sequence
b p i - (M) - Sym" (M) — 0
1<ji<j2<nii,i2€l

where the pure tensor mi; @ ... ® My_o maps to

m1®...®xi1®...®xi2®...®mn_2

with x;y and x;, occupying slots j1 and jz in the tensor

— m1®®x72®®x“®®mn_2

with x;, and x;; occupying slots j1 and jz in the tensor

Proof. Omitted. O

Lemma 13.4. Let A — B be a ring map. Let M be a B-module. Letn > 1. The
kernel of the A-linear map M @4 ...@4 M — N (M) is generated as an A-module
by the elements m1 @ ... ® my, with m; = m; fori # j, my,...,m, € M and
the elements M1 @ ... bM; ® ... My —M1 @ ... bM; ® ... ® my, fori # j,
my,...,my € M, and b € B.

Proof. Omitted. O

Lemmal 13.5. Let R be a ring. Let M; be a directed system of R-modules. Then
colim; T(M;) = T(colim; M;) and similarly for the symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma [12.9 (]
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Lemma 13.6. Let R be a ring and let S C R be a multiplicative subset. Then
STITR(M) = Tg-1z(S™IM) for any R-module M. Similar for symmetric and
exterior algebras.

Proof. Omitted. Hint: Apply Lemma [12.16 [

14. Base change
We formally introduce base change in algebra as follows.

Definition 14.1. Let ¢ : R — S be a ring map. Let M be an S-module. Let
R — R’ be any ring map. The base change of ¢ by R — R’ is the ring map
R’ — S ®gr R’. In this situation we often write S’ = S ®r R’. The base change of
the S-module M is the S’-module M ®pr R'.

If S = R[z;]/(f;) for some collection of variables z;, ¢ € I and some collection of
polynomials f; € R[z;], j € J, then S®@pr R' = R'[x;]/(f}), where f] € R'[z;] is the
image of f; under the map R[z;] — R'[z;] induced by R — R’. This simple remark
is the key to understanding base change.

Lemmal 14.2. Let R — S be a ring map. Let M be an S-module. Let R — R’ be
a ring map and let S' =S ®r R’ and M' = M @, R’ be the base changes.
(1) If M is a finite S-module, then the base change M’ is a finite S"-module.
(2) If M is an S-module of finite presentation, then the base change M’ is an
S’-module of finite presentation.
(3) If R — S is of finite type, then the base change R’ — S’ is of finite type.
(4) If R — S is of finite presentation, then the base change R' — S’ is of finite
presentation.

Proof. Proof of (1). Take a surjective, S-linear map S®* — M — 0. By Lemma
and the result after tensoring with R’ is a surjection $’®" — M’ — 0,
so M’ is a finitely generated S’-module. Proof of (2). Take a presentation S®™ —
S®" — M — 0. By Lemma and the result after tensoring with R’ gives
a finite presentation $'®™ — §’" — M’ — 0, of the S’-module M’. Proof of (3).
This follows by the remark preceding the lemma as we can take I to be finite by
assumption. Proof of (4). This follows by the remark preceding the lemma as we
can take I and J to be finite by assumption. (I

Let ¢ : R — S be a ring map. Given an S-module N we obtain an R-module Ng
by the rule r - n = ¢(r)n. This is sometimes called the restriction of N to R.

Lemma 14.3. Let R — S be a ring map. The functors Mods — Modgr, N — Ng
(restriction) and Modr — Mods, M — M ®pg S (base change) are adjoint functors.
In a formula

Hompg(M, Ng) = Homg(M ®r S, N)

Proof. If o : M — Ng is an R-module map, then we define o/ : M @z S — N by
the rule &/(m ® s) = sa(m). If §: M ®r S — N is an S-module map, we define
B M — Npg by the rule 8'(m) = 8(m ® 1). We omit the verification that these
constructions are mutually inverse. O

The lemma above tells us that restriction has a left adjoint, namely base change.
It also has a right adjoint.
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Lemma 14.4. Let R — S be a ring map. The functors Mods — Modgr, N — Ng
(restriction) and Modr — Mods, M — Hompg(S, M) are adjoint functors. In a
formula

HomR(NR, M) = HomS(N, HOIIlR(S7 M))

Proof. If « : N — M is an R-module map, then we define o : N — Homp(S, M)
by the rule &/(n) = (s — a(sn)). If 8 : N — Hompg(S, M) is an S-module map,
we define 5/ : Np — M by the rule 8'(n) = 8(n)(1). We omit the verification that
these constructions are mutually inverse. O

Lemma 14.5. Let R — S be a ring map. Given S-modules M, N and an R-module
P we have

Homp(M ®g N, P) = Homg(M,Homg (N, P))
Proof. This can be proved directly, but it is also a consequence of Lemmas
and Namely, we have
Hompr(M ®s N, P) = Homg(M ®s N,Hompg(S, P))
= Homg (M, Homg (N, Hompg(S, P)))
= Homg(M,Hompg(N, P))
as desired. 0

15. Miscellany

The proofs in this section should not refer to any results except those from the
section on basic notions, Section [3]

Lemma 15.1. Let R be a ring, I and J two ideals and p a prime ideal containing
the product IJ. Then p contains I or J.

Proof. Assume the contrary and take z € I'\ p and y € J\ p. Their product is an
element of I.J C p, which contradicts the assumption that p was prime. ([

Lemma 15.2 (Prime avoidance). Let R be a ring. Let I; C R, i =1,...,r, and
J C R be ideals. Assume

(1) JZI; fori=1,...,r, and
(2) all but two of I; are prime ideals.
Then there exists an x € J, x & I; for all 1.
Proof. The result is true for r = 1. If r = 2, then let z,y € J with z ¢ I; and

y &€ I;. We are done unless « € Iy and y € I;. Then the element = + y cannot be
in I (since that would mean x +y — y € I) and it also cannot be in Is.

For r > 3, assume the result holds for » — 1. After renumbering we may assume
that I,. is prime. We may also assume there are no inclusions among the I;. Pick

zeJ, x&foralli=1,...,r—1. If x & I, we are done. So assume z € I,.
If JIy... I,y C I, then J C I, (by Lemma [15.1) a contradiction. Pick y €
JI ... 1.—1, y & I.. Then x + y works. (]

Lemma 15.3. Let R be a ring. Let x € R, I C R an ideal, and p;, i = 1,...,7
be prime ideals. Suppose that x + 1 ¢ p; fori=1,...,r. Then there exists a y € 1
such that x +y & p; for all i.
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Proof. We may assume there are no inclusions among the p;. After reordering we
may assume x ¢ p; for i < s and x € p; for i > s. If s = r + 1 then we are done.
If not, then we can find y € I with y ¢ p,. Choose f € (),_,p; with f & p,. Then
x + fy is not contained in pi,...,ps. Thus we win by induction on s. [

Lemma 15.4 (Chinese remainder). Let R be a ring.

(1) If I, ..., I are ideals such that I, + I, = R when a # b, then [1N...NI,. =
11]2...17« and R/(Illglr) = R/Il X ... X R/IT

(2) If my,...,m, are pairwise distinct mazimal ideals then m, +m, = R for
a # b and the above applies.

Proof. Let us first prove I1N...N1. = I; ... I, as this will also imply the injectivity
of the induced ring homomorphism R/(I; ...I.) = R/I1 x...x R/I,. The inclusion
LN...NI. D I;... I, is always fulfilled since ideals are closed under multiplication
with arbitrary ring elements. To prove the other inclusion, we claim that the ideals

Il...fi...Ir, izl,...,T‘

generate the ring R. We prove this by induction on r. It holds when r = 2. If
r > 2, then we see that R is the sum of the ideals I ...J;... I,_y,i=1,...,r — 1.
Hence I, is the sum of the ideals Il...fi...Ir, i =1,...,r — 1. Applying the
same argument with the reverse ordering on the ideals we see that I; is the sum
of the ideals I ...1I; . A, i =2,...,r. Since R = I + I, by assumption we see
that R is the sum of the ideals displayed above. Therefore we can find elements
a; € I...I;... 1. such that their sum is one. Multiplying this equation by an
element of Iy N ... N I. gives the other inclusion. It remains to show that the
canonical map R/(I;...I.) = R/I; x ... x R/I, is surjective. For this, consider
its action on the equation 1 = Y""_, a; we derived above. On the one hand, a ring
morphism sends 1 to 1 and on the other hand, the image of any a; is zero in R/I;
for j # i. Therefore, the image of a; in R/I; is the identity. So given any element
(bi,...,b) € R/I x ... x R/I,, the element >i_,a;-b; is an inverse image in R.

To see (2), by the very definition of being distinct maximal ideals, we have m,+m;, =
R for a # b and so the above applies. O

Lemmal 15.5. Let R be a ring. Let n > m. Let A be an n X m matriz with
coefficients in R. Let J C R be the ideal generated by the m x m minors of A.

(1) For any f € J there exists a m x n matriz B such that BA = fl,,xm.
(2) If f € R and BA = flyxm for some m x n matriz B, then f™ € J.

Proof. For I C {1,...,n} with |I| = m, we denote by E; the m x n matrix of the

projection
bn _
R*" = @i€{17...,n} E— i€l R

and set Ay = EjA, ie., A; is the m x m matrix whose rows are the rows of A
with indices in I. Let B; be the adjugate (transpose of cofactor) matrix to Ay,
i.e., such that A;B;y = BrA; = det(A7)lyxm. The m x m minors of A are the
determinants det Ay for all the I C {1,...,n} with |I| = m. If f € J then we can
write f =) crdet(Ar) for some ¢y € R. Set B =Y ¢;BrE} to see that (1) holds.

If f1,,%xm = BA then by the Cauchy-Binet formula we have f™ =" by det(Ay)
where by is the determinant of the m x m matrix whose columns are the columns

of B with indices in I. O
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080R |Lemma 15.6. Let R be a ring. Let n > m. Let A = (a;j) be an n X m matric
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with coefficients in R, written in block form as

A=)

where Ay has size m X m. Let B be the adjugate (transpose of cofactor) matriz to

Ai. Then
_ f]-mxm
AB_< . )

where f = det(A1) and ¢;; is (up to sign) the determinant of the m x m minor of
A corresponding to the rows 1,...,7,...,m,i.

Proof. Since the adjugate has the property A1 B = BA; = f the first block of the
expression for AB is correct. Note that

Cij = Zk airbrj = Y (1) Fa;, det(A]")

where Aij means A; with the jth row and kth column removed. This last expression
is the row expansion of the determinant of the matrix in the statement of the
lemma. ([

Lemma 15.7. Let R be a nonzero ring. Let n > 1. Let M be an R-module
generated by < n elements. Then any R-module map f : R®™ — M has a nonzero
kernel.

Proof. Choose a surjection R®"~! — M. We may lift the map f to a map
' R®" — R®"~! (Lemma . It suffices to prove f’ has a nonzero kernel. The
map f': RP" — R®"~1 is given by a matrix A = (a;;). If one of the a;; is not
nilpotent, say a = a;; is not, then we can replace R by the localization R, and we
may assume a;; is a unit. Since if we find a nonzero kernel after localization then
there was a nonzero kernel to start with as localization is exact, see Proposition
In this case we can do a base change on both R®” and R®"~! and reduce to
the case where

1 0 0
A— 0 a2 ao3
0 as2

Hence in this case we win by induction on n. If not then each a;; is nilpotent. Set
I = (ai;) C R. Note that I™*! = 0 for some m > 0. Let m be the largest integer
such that I"™ # 0. Then we see that (I"™)®" is contained in the kernel of the map
and we win. 0

Lemma 15.8. Let R be a nonzero ring. Let n,m > 0 be integers. If R®" is
isomorphic to R®™ as R-modules, then n = m.

Proof. Immediate from Lemma [5.7 O
16. Cayley-Hamilton
Lemma 16.1. Let R be a ring. Let A = (a;;) be an nxn matriz with coefficients in

R. Let P(z) € R[x] be the characteristic polynomial of A (defined as det(zidyxn —
A)). Then P(A) =0 in Mat(n x n, R).
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Proof. We reduce the question to the well-known Cayley-Hamilton theorem from
linear algebra in several steps:

(1) If ¢ : S — R is a ring morphism and b;; are inverse images of the a;; under
this map, then it suffices to show the statement for S and (b;;) since ¢ is a
ring morphism.

(2) If ¥ : R < S is an injective ring morphism, it clearly suffices to show the
result for S and the a;; considered as elements of S.

(3) Thus we may first reduce to the case R = Z[Xj;], a;; = X;; of a polynomial
ring and then further to the case R = Q(X;;) where we may finally apply
Cayley-Hamilton.

O

Lemma 16.2. Let R be a ring. Let M be a finite R-module. Let p : M — M
be an endomorphism. Then there exists a monic polynomial P € R[T] such that
P(¢) =0 as an endomorphism of M.

Proof. Choose a surjective R-module map R®™ — M, given by (a1,...,a,) —
>~ a;z; for some generators x; € M. Choose (a;1, ..., a;,) € R®™ such that p(x;) =
> a;jz;. In other words the diagram

RO — s M

R®" — = M

is commutative where A = (a;;). By Lemma there exists a monic polynomial
P such that P(A) = 0. Then it follows that P(p) = 0. O

Lemma 16.3. Let R be a ring. Let I C R be an ideal. Let M be a finite R-module.
Let ¢ : M — M be an endomorphism such that (M) C IM. Then there exists a
monic polynomial P = t"+a1t" ' +...+a, € R[T] such that aj € I’ and P(p) =0
as an endomorphism of M.

Proof. Choose a surjective R-module map R®" — M, given by (a1,...,a,) —
>~ a;x; for some generators z; € M. Choose (a1, - .., ain) € I¥" such that p(z;) =
> ai;xj. In other words the diagram

RO — > M

i |+

(I Y
is commutative where A = (a;;). By Lemmal[l6.1]the polynomial P(t) = det(tid,xn—
A) has all the desired properties. |
As a fun example application we prove the following surprising lemma.

Lemmal 16.4. Let R be a ring. Let M be a finite R-module. Let ¢ : M — M be
a surjective R-module map. Then ¢ is an isomorphism.

First proof. Write R’ = R[z] and think of M as a finite R’-module with z acting
via ¢. Set I = (x) C R’. By our assumption that ¢ is surjective we have IM = M.
Hence we may apply Lemma to M as an R’-module, the ideal I and the
endomorphism idps. We conclude that (14 a1 + ... + a,)idys = 0 with a; € I.
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Write a; = bj(z)x for some b;(z) € R[z]. Translating back into ¢ we see that
idy = —(32 21,0 bi(9))p, and hence ¢ is invertible. O

Second proof. We perform induction on the number of generators of M over R.
If M is generated by one element, then M = R/I for some ideal I C R. In this
case we may replace R by R/I so that M = R. In this case ¢ : R — R is given by
multiplication on M by an element r € R. The surjectivity of ¢ forces r invertible,
since ¢ must hit 1, which implies that ¢ is invertible.

Now assume that we have proven the lemma in the case of modules generated by
n — 1 elements, and are examining a module M generated by n elements. Let
A mean the ring R[t], and regard the module M as an A-module by letting ¢
act via ¢; since M is finite over R, it is finite over R[t] as well, and since we’re
trying to prove ¢ injective, a set-theoretic property, we might as well prove the
endomorphism ¢t : M — M over A injective. We have reduced our problem to the
case our endomorphism is multiplication by an element of the ground ring. Let
M' C M denote the sub-A-module generated by the first n — 1 of the generators of
M, and consider the diagram

0 M M M/M' —>0
lK,DIM/ i‘ﬁ lcp mod M’
0 M’ M M/M' —0,

where the restriction of ¢ to M’ and the map induced by ¢ on the quotient M /M’
are well-defined since ¢ is multiplication by an element in the base, and M’ and
M/M'" are A-modules in their own right. By the case n = 1 the map M/M' —
M/M' is an isomorphism. A diagram chase implies that ¢|p; is surjective hence
by induction |y is an isomorphism. This forces the middle column to be an
isomorphism by the snake lemma. O

17. The spectrum of a ring

We arbitrarily decide that the spectrum of a ring as a topological space is part of
the algebra chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 17.1. Let R be a ring.

(1) The spectrum of R is the set of prime ideals of R. It is usually denoted
Spec(R).

(2) Given a subset T' C R we let V(T') C Spec(R) be the set of primes contain-
ing T, i.e., V(T) = {p € Spec(R) | Vf € T, f € p}.

(3) Given an element f € R we let D(f) C Spec(R) be the set of primes not
containing f.

Lemma 17.2. Let R be a ring.

1) The spectrum of a ring R is empty if and only if R is the zero ring.

2) Ewvery nonzero ring has a maximal ideal.

3) Every nonzero ring has a minimal prime ideal.

4) Given an ideal I C R and a prime ideal I C p there exists a prime I C q C p
such that q is minimal over I.

(5) If T C R, and if (T) is the ideal generated by T in R, then V((T)) = V(T).

(
(
(
(
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If I is an ideal and /T is its radical, see basic notion , then V(I) =
V(VI).

Given an ideal I of R we have VI = ﬂICp p.

If I is an ideal then V(I) = 0 if and only if I is the unit ideal.

If I, J are ideals of R then V(I)UV(J)=V(INJ).

If (In)aca is a set of ideals of R then (\,ca V(Ia) =V (Ugea La)-

If f € R, then D(f) L1V (f) = Spec(R).

If f € R then D(f) =0 if and only if f is nilpotent.

If f =uf’ for some unit u € R, then D(f) = D(f").

If I C R is an ideal, and p is a prime of R with p & V(I), then there exists
an f € R such that p € D(f), and D(f) NV (I) = 0.

If f.g € R, then D(fg) = D(f) N D(g).

If fi € R fori € I, then U;c; D(fi) is the complement of V({fi}icr) in
Spec(R).

If f € R and D(f) = Spec(R), then f is a unit.

We address each part in the corresponding item below.

This is a direct consequence of (2) or (3).

Let 2 be the set of all proper ideals of R. This set is ordered by inclusion
and is non-empty, since (0) € 2 is a proper ideal. Let A be a totally ordered
subset of 2. Then (J;c 4 [ is in fact an ideal. Since 1 ¢ I for all I € A,
the union does not contain 1 and thus is proper. Hence | J; 4 I is in 2l and
is an upper bound for the set A. Thus by Zorn’s lemma 2 has a maximal
element, which is the sought-after maximal ideal.

Since R is nonzero, it contains a maximal ideal which is a prime ideal. Thus
the set 2 of all prime ideals of R is nonempty. 2l is ordered by reverse-
inclusion. Let A be a totally ordered subset of 2. It’s pretty clear that
J = ﬂIGA I is in fact an ideal. Not so clear, however, is that it is prime.
Let zy € J. Then zy € I for all I € A. Now let B = {I € Aly € I}. Let
K = ﬂIGB I. Since A is totally ordered, either K = J (and we’re done,
since then y € J) or K D J and for all I € A such that I is properly
contained in K, we have y ¢ I. But that means that for all those I,z € I,
since they are prime. Hence x € J. In either case, J is prime as desired.
Hence by Zorn’s lemma we get a maximal element which in this case is a
minimal prime ideal.

This is the same exact argument as (3) except you only consider prime
ideals contained in p and containing I.

(T') is the smallest ideal containing T'. Hence if T' C I, some ideal, then
(T) C I as well. Hence if I € V(T), then I € V((T)) as well. The other
inclusion is obvious.

Since I ¢ VI,V(VI) c V(I). Now let p € V(I). Let € vI. Then
z" € I for some n. Hence x™ € p. But since p is prime, a boring induction
argument gets you that = € p. Hence VI C p and p € V(V1).

Let f € R\ VI. Then f* ¢ I for all n. Hence S = {1,f,f? ...} is
a multiplicative subset, not containing 0. Take a prime ideal p C S™'R
containing S~'I. Then the pull-back p in R of p is a prime ideal containing
I that does not intersect S. This shows that ((;,p C VI. Now if a € VT,
then a™ € I for some n. Hence if I C p, then a™ € p. But since p is prime,
we have a € p. Thus the equality is shown.
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(8) I is not the unit ideal if and only if I is contained in some maximal ideal
(to see this, apply (2) to the ring R/I) which is therefore prime.

(9) Ifp e V(I)UV(J), then I C p or J C p which means that I NJ C p. Now
if INJ Cyp, then I.J C p and hence either I of J is in p, since p is prime.

(10) peNeea Vo) & IaCpVac A p e V(U ca la)

(11) If p is a prime ideal and f € R, then either f € p or f ¢ p (strictly) which
is what the disjoint union says.

(12) If a € R is nilpotent, then a™ = 0 for some n. Hence a™ € p for any prime
ideal. Thus a € p as can be shown by induction and D(a) = 0. Now, as
shown in (7), if @ € R is not nilpotent, then there is a prime ideal that does
not contain it.

(13) f ep < uf €p, since u is invertible.

(14) If p ¢ V(I), then 3f € T\ p. Then f ¢ psop € D(f). Also if q € D(f),
then f ¢ q and thus I is not contained in ¢. Thus D(f) NV (I) = 0.

(15) If fg € p, then f €por g € p. Henceif f ¢ pand g ¢ p, then fg ¢ p. Since
p is an ideal, if fg ¢ p, then f ¢ p and g ¢ p.

(16) p € Uie; D(fi) & Ji€ I, fi ¢ p < p € Spec(R) \ V({fi}ier)

(17) If D(f) = Spec(R), then V(f) = 0 and hence fR = R, so f is a unit.

O

The lemma implies that the subsets V(T') from Definition form the closed
subsets of a topology on Spec(R). And it also shows that the sets D(f) are open
and form a basis for this topology.

Definition 17.3. Let R be a ring. The topology on Spec(R) whose closed sets
are the sets V(T') is called the Zariski topology. The open subsets D(f) are called
the standard opens of Spec(R).

It should be clear from context whether we consider Spec(R) just as a set or as a
topological space.

Lemmal 17.4. Suppose that ¢ : R — R’ is a ring homomorphism. The induced
map

Spec(p) : Spec(R') — Spec(R),  p' — ¢ (p')
is continuous for the Zariski topologies. In fact, for any element f € R we have
Spec(p) " (D(f)) = D(p(f))-
Proof. It is basic notion that p := ¢~ 1(p’) is indeed a prime ideal of R. The
last assertion of the lemma follows directly from the definitions, and implies the
first. O
If ' : R — R" is a second ring homomorphism then the composition

Spec(R") — Spec(R') — Spec(R)

equals Spec(p’ o ¢). In other words, Spec is a contravariant functor from the

category of rings to the category of topological spaces.

Lemmal 17.5. Let R be a ring. Let S C R be a multiplicative subset. The map
R — S™'R induces via the functoriality of Spec a homeomorphism

Spec(ST'R) — {p € Spec(R) | SNp =0}

where the topology on the right hand side is that induced from the Zariski topology
on Spec(R). The inverse map is given by p — S~ 1p.
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Proof. Denote the right hand side of the arrow of the lemma by D. Choose a
prime p’ C STIR and let p the inverse image of p’ in R. Since p’ does not contain
1 we see that p does not contain any element of S. Hence p € D and we see that
the image is contained in D. Let p € D. By assumption the image S does not
contain 0. By basic notion g_l(R/p) is not the zero ring. By basic notion
we see STIR/ST1p = g_l(R/p) is a domain, and hence S~!p is a prime.
The equality of rings also shows that the inverse image of S~'p in R is equal to
p, because R/p — F_l(R/p) is injective by basic notion . This proves that
the map Spec(S™'R) — Spec(R) is bijective onto D with inverse as given. It is
continuous by Lemma @ Finally, let D(g) C Spec(S™'R) be a standard open.
Write g = h/s for some h € R and s € S. Since g and h/1 differ by a unit we have
D(g) = D(h/1) in Spec(S™'R). Hence by Lemma and the bijectivity above
the image of D(g) = D(h/1) is DN D(h). This proves the map is open as well. [

Lemma 17.6. Let R be a ring. Let f € R. The map R — Ry induces via the
functoriality of Spec a homeomorphism

Spec(Ry) — D(f) C Spec(R).
The inverse is given by p — p - Ry.

Proof. This is a special case of Lemma [17.5 ]

It is not the case that every “affine open” of a spectrum is a standard open. See
Example 27.4]

Lemma 17.7. Let R be a ring. Let I C R be an ideal. The map R — R/I induces
via the functoriality of Spec a homeomorphism

Spec(R/I) — V(I) C Spec(R).
The inverse is given by p — p/1.

Proof. It is immediate that the image is contained in V(I). On the other hand, if
p € V(I) then p D I and we may consider the ideal p/I C R/I. Using basic notion
we see that (R/I)/(p/I) = R/p is a domain and hence p/I is a prime ideal.
From this it is immediately clear that the image of D(f + I) is D(f) NV (I), and
hence the map is a homeomorphism. ([l

Remark| 17.8. A fundamental commutative diagram associated to a ring map
©: R — S, aprime q C S and the corresponding prime p = ¢~ 1(q) of R is the
following

K(q) = Sq/a5q Sq ) S/q r(q)
T ] |

K(p) @r S = Sp/pSp Sp S S/pS (R\p)~'S/pS
| ] |

K(p) = Ryp/pRy Ry R R/p K(p)

In this diagram the arrows in the outer left and outer right columns are identical.
The horizontal maps induce on the associated spectra always a homeomorphism
onto the image. The lower two rows of the diagram make sense without assuming q
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exists. The lower squares induce fibre squares of topological spaces. This diagram
shows that p is in the image of the map on Spec if and only if S ® g k(p) is not the
zero ring.

Lemmal17.9. Let o : R — S be a ring map. Let p be a prime of R. The following
are equivalent
(1) p is in the image of Spec(S) — Spec(R),
(2) S®r K(p) #0,
(3) Sp/pSp #0,
(4) (S/pS)p, #0, and
(5) p=¢"'(pS).
Proof. We have already seen the equivalence of the first two in Remark The
others are just reformulations of this. O

Lemma 17.10. Let R be a ring. The space Spec(R) is quasi-compact.

Proof. It suffices to prove that any covering of Spec(R) by standard opens can
be refined by a finite covering. Thus suppose that Spec(R) = UD(f;) for a set of
elements {f;};c; of R. This means that NV (f;) = 0. According to Lemma [17.2]
this means that V({f;}) = 0. According to the same lemma this means that the
ideal generated by the f; is the unit ideal of R. This means that we can write
1 as a finite sum: 1 = > . ;rif; with J C I finite. And then it follows that
Spec(R) = Use s D(fs). O

Lemma 17.11. Let R be a ring. The topology on X = Spec(R) has the following
properties:

(1) X is quasi-compact,

(2) X has a basis for the topology consisting of quasi-compact opens, and

(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma It has a basis
for the topology consisting of the standard opens D(f) = Spec(Ry) (Lemma
which are quasi-compact by the first remark. The intersection of two standard
opens is quasi-compact as D(f) N D(g) = D(fg). Given any two quasi-compact
opens U,V C X we may write U = D(f1)U...UD(f,) and V = D(g1)U...UD(gm).
Then U NV =JD(f;g;) which is quasi-compact. O

18. Local rings

Local rings are the bread and butter of algebraic geometry.

Definition 18.1. A local ring is a ring with exactly one maximal ideal. The
maximal ideal is often denoted mpg in this case. We often say “let (R, m,k) be a
local ring” to indicate that R is local, m is its unique maximal ideal and kK = R/m
is its residue field. A local homomorphism of local rings is a ring map ¢ : R — S
such that R and S are local rings and such that ¢(mpg) C mg. If it is given that R
and S are local rings, then the phrase “local ring map ¢ : R — S” means that ¢ is
a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of
local rings.

Lemma 18.2. Let R be a ring. The following are equivalent:
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(1) R is a local ring,

(2) Spec(R) has exactly one closed point,

(3) R has a maximal ideal m and every element of R\ m is a unit, and

(4) R is not the zero ring and for every x € R either x or 1 — x is invertible
or both.

Proof. Let R be a ring, and m a maximal ideal. If x € R\ m, and z is not a unit
then there is a maximal ideal m’ containing x. Hence R has at least two maximal
ideals. Conversely, if m’ is another maximal ideal, then choose z € wm/, x &€ m.
Clearly x is not a unit. This proves the equivalence of (1) and (3). The equivalence
(1) and (2) is tautological. If R is local then (4) holds since x is either in m or not.
If (4) holds, and m, m’ are distinct maximal ideals then we may choose x € R such
that £ mod m’ = 0 and  mod m = 1 by the Chinese remainder theorem (Lemma
15.4). This element x is not invertible and neither is 1 — 2 which is a contradiction.
Thus (4) and (1) are equivalent. O

The localization Ry, of a ring R at a prime p is a local ring with maximal ideal pR,,.
Namely, the quotient R,/pR, is the fraction field of the domain R/p and every
element of R, which is not contained in pR, is invertible.

Lemma 18.3. Let ¢ : R — S be a ring map. Assume R and S are local rings.
The following are equivalent:

(1) ¢ is a local ring map,

( ) (mR) C mg, and

(3) ¢~ !(mg) = mg.

(4) For any x € R, if p(x) is invertible in S, then x is invertible in R.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2)
holds. Conversely, if (2) holds, then ¢! (mg) is a prime ideal containing the max-
imal ideal mp, hence ¢ ~!(mg) = mp. Finally, (4) is the contrapositive of (2) by
Lemma [[82 (]

Let ¢ : R — S be a ring map. Let q C S be a prime and set p = o~ 1(q). Then the
induced ring map R, — S, is a local ring map.

19. The Jacobson radical of a ring

We recall that the Jacobson radical rad(R) of a ring R is the intersection of all
maximal ideals of R. If R is local then rad(R) is the maximal ideal of R.

Lemma 19.1. Let R be a ring with Jacobson radical rad(R). Let I C R be an
ideal. The following are equivalent

(1) I C rad(R), and

(2) every element of 1+ I is a unit in R.
In this case every element of R which maps to a unit of R/I is a unit.

Proof. If f € rad(R), then f € m for all maximal ideals m of R. Hence 1 + f ¢ m
for all maximal ideals m of R. Thus the closed subset V(1 + f) of Spec(R) is empty.
This implies that 1 4+ f is a unit, see Lemma [17.2

Conversely, assume that 1+ f is a unit for all f € I. If m is a maximal ideal and
I ¢ m, then ] + m = R. Hence 1 = f + g for some ¢ € m and f € I. Then
g =1+ (—f) is not a unit, contradiction.
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For the final statement let f € R map to a unit in R/I. Then we can find g € R
mapping to the multiplicative inverse of f mod I. Then fg = 1 mod I. Hence fg
is a unit of R by (2) which implies that f is a unit. O

Lemma 19.2. Let ¢ : R — S be a ring map such that the induced map Spec(S) —
Spec(R) is surjective. Then an element © € R is a unit if and only if p(x) € S is
a unit.

Proof. If z is a unit, then so is p(z). Conversely, if ¢(x) is a unit, then ¢(z) € q
for all q € Spec(S). Hence z ¢ ¢~ 1(q) = Spec(p)(q) for all g € Spec(S). Since
Spec(yp) is surjective we conclude that z is a unit by part (17) of Lemma[17.2] O

20. Nakayama’s lemma

We quote from [Mat70]: “This simple but important lemma is due to T. Nakayama,
G. Azumaya and W. Krull. Priority is obscure, and although it is usually called
the Lemma of Nakayama, late Prof. Nakayama did not like the name.”

Lemma 20.1 (Nakayama’s lemma). Let R be a ring with Jacobson radical rad(R).
Let M be an R-module. Let I C R be an ideal.

(1) If IM = M and M is finite, then there exists an f € 1+ I such that
FM = 0.

(2) If IM = M, M is finite, and I C rad(R), then M = 0.

(3) If NN N' € M, M = N+IN’, and N' is finite, then there exists an f € 1+1
such that fM C N and My = Ny.

(4) If NNN'C M, M =N+ 1IN’', N’ is finite, and I C rad(R), then M = N.
(5) If N — M is a module map, N/JIN — M/IM is surjective, and M is
finite, then there exists an f € 141 such that Ny — My is surjective.

(6) If N - M is a module map, N/IN — M/IM is surjective, M is finite,

and I C rad(R), then N — M is surjective.
(7) If v1,...,xy, € M generate M/IM and M is finite, then there exists an
f € 1+1 such that xq,...,x, generate My over Ry.
(8) If x1,...,x, € M generate M/IM, M is finite, and I C rad(R), then M
is generated by x1,...,%y.
(9) If IM = M, I is nilpotent, then M = 0.
(10) If NyN'C M, M =N + IN’, and I is nilpotent then M = N.
(11) If N — M is a module map, I is nilpotent, and N/IN — M/IM is
surjective, then N — M is surjective.
(12) If {za}aca is a set of elements of M which generate M/IM and I is
nilpotent, then M 1is generated by the x,.

Proof. Proof of . Choose generators yi,...,Yym of M over R. For each i we
can write y; = >~ z;;y; with 2;; € I (since M = IM). In other words > ,(0;; —
zij)y; = 0. Let f be the determinant of the m x m matrix A = (0;; — 2;;). Note
that f € 14 I (since the matrix A is entrywise congruent to the m x m identity
matrix modulo I). By Lemma [15.5] (1), there exists an m x m matrix B such that
BA = fl,,xm. Writing out we see that ), byja;; = fop; for all h and j; hence,
Zi,j briaijy; = Zj fonjy; = fyn for every h. In other words, 0 = fy; for every h
(since each i satisfies 3 a;;y; = 0). This implies that f annihilates M.

By Lemma an element of 1 4 rad(R) is invertible element of R. Hence we see
that implies (2). We obtain (3) by applying (1) to M/N which is finite as N’

[Mat70, 1.M Lemma
(NAK) page 11]
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is finite. We obtain (4) by applying (2) to M/N which is finite as N’ is finite. We
obtain (5) by applying (3) to M and the submodules Im(N — M) and M. We
obtain (6) by applying (4) to M and the submodules Im(N — M) and M. We
obtain (7) by applying (5) to the map R®™ — M, (ay,...,an) = @121 +. ..+ apnTy.
We obtain (8) by applying (6) to the map R®" — M, (a1,...,a,) — a121 + ... +
AnThp.

Part (9) holds because if M = IM then M = I"M for all n > 0 and I being
nilpotent means I"™ = 0 for some n > 0. Parts (10), (11), and (12) follow from (9)
by the arguments used above. [l

Lemmal 20.2. Let R be a ring, let S C R be a multiplicative subset, let I C R be
an ideal, and let M be a finite R-module. If x1,...,x, € M generate S~*(M/IM)
as an STY(R/I)-module, then there exists an f € S+1 such that x1, ..., x, generate
My as an Rf—moduleﬂ

Proof. Special case I = 0. Let yp,...,ys be generators for M over R. Since
S~IM is generated by x1,...,z,, for each i we can write y; = > (a;j/s;j)x; for
some a;; € R and s;; € S. Let s € S be the product of all of the s;;. Then we
see that y; is contained in the Rs-submodule of M, generated by x1,...,x,. Hence
Ti,...,T, generates M.

General case. By the special case, we can find an s € S such that z1, ..., z, generate
(M/IM), over (R/I),. By Lemma [20.1] we can find a g € 1 + I, C R, such that
x1,...,x, generate (M), over (Ry),. Write g = 1+41i/s’. Then f = ss’ 4 is works;
details omitted. O

Lemmal 20.3. Let A — B be a local homomorphism of local rings. Assume
(1) B is finite as an A-module,
(2) mp is a finitely generated ideal,
(3) A — B induces an isomorphism on residue fields, and
(4) ma/m?% — mp/m% is surjective.
Then A — B is surjective.

Proof. To show that A — B is surjective, we view it as a map of A-modules and
apply Lemma (6). We conclude it suffices to show that A/ms — B/myB is
surjective. As A/my = B/mp it suffices to show that myB — mp is surjective.
View my B — mp as a map of B-modules and apply Lemma (6). We conclude
it suffices to see that myB/mamp — mp/m% is surjective. This follows from
assumption (4). O

21. Open and closed subsets of spectra

It turns out that open and closed subsets of a spectrum correspond to idempotents
of the ring.

Lemmal 21.1. Let R be a ring. Let e € R be an idempotent. In this case
Spec(R) = D(e) 1 D(1 —e).

1Special cases: (I) I = 0. The lemma says if z1,...,2, generate S™'M, then z1,...,z,
generate My for some f € S. (II) I = p is a prime ideal and S = R\ p. The lemma says if
x1,...,¢r generate M ®p x(p) then x1,...,z, generate My for some f € R, f & p.
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Proof. Note that an idempotent e of a domain is either 1 or 0. Hence we see that

D(e) = {peSpec(R)|e¢p}
{p € Spec(R) | e # 0 in k(p)}
= {peSpec(R) |e=11ink(p)}

Similarly we have

D(1—e) = {peSpec(R)|1—e¢gp}
= {pe€Spec(R)|e#1ink(p)}
= {p € Spec(R)|e=01in k(p)}

Since the image of e in any residue field is either 1 or 0 we deduce that D(e) and
D(1 — e) cover all of Spec(R). O

Lemma 21.2. Let Ry and Rs be rings. Let R = Ry X Ry. The maps R — Ry,
(x,y) = x and R — Ra, (x,y) — y induce continuous maps Spec(R1) — Spec(R)
and Spec(Rg) — Spec(R). The induced map

Spec(R;) II Spec(Ry) — Spec(R)

is a homeomorphism. In other words, the spectrum of R = Ry X Ry is the disjoint
union of the spectrum of Ry and the spectrum of Rs.

Proof. Write 1 = e1 + e3 with e; = (1,0) and es = (0,1). Note that e; and
es = 1 —e; are idempotents. We leave it to the reader to show that Ry = R,, is the
localization of R at e;. Similarly for e5. Thus the statement of the lemma follows
from Lemma RT.1] combined with Lemma [I7.6] O

We reprove the following lemma later after introducing a glueing lemma for func-
tions. See Section 241

Lemma 21.3. Let R be a ring. For each U C Spec(R) which is open and closed
there exists a unique idempotent e € R such that U = D(e). This induces a 1-
1 correspondence between open and closed subsets U C Spec(R) and idempotents
ec R.

Proof. Let U C Spec(R) be open and closed. Since U is closed it is quasi-compact
by Lemma and similarly for its complement. Write U = (J;_; D(f;) as a finite
union of standard opens. Similarly, write Spec(R)\U = UT:l D(g;) as a finite union
of standard opens. Since ) = D(f;) N D(g;) = D(fig;) we see that f;g; is nilpotent
by Lemma [17.2] Let I = (f1,..., fn) C Randlet J = (g1,...,9m) C R. Note that
V(J) equals U, that V(I) equals the complement of U, so Spec(R) = V(I) LIV (J).
By the remark on nilpotency above, we see that (I.J)" = (0) for some sufficiently
large integer N. Since |JD(f;) U JD(g;) = Spec(R) we see that I +J = R,
see Lemma [17.2] By raising this equation to the 2Nth power we conclude that
IV + JN = R. Write 1 = 2 +y with x € IV and y € JV. Then 0 = 2y = 2(1 — )
as INJN = (0). Thus z = 2? is idempotent and contained in IV C I. The
idempotent y = 1 — z is contained in J» C .J. This shows that the idempotent z
maps to 1 in every residue field x(p) for p € V(J) and that = maps to 0 in x(p) for
every p € V(I).

To see uniqueness suppose that e;, e; are distinct idempotents in R. We have to
show there exists a prime p such that e; € p and es € p, or conversely. Write
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el =1—e;. If e; # ey, then 0 # e; —ex = e1(ea + €h) — (e1 + €])ea = erel, — €jes.
Hence either the idempotent eje, # 0 or e€jes # 0. An idempotent is not nilpotent,
and hence we find a prime p such that either ejey, & p or €jes & p, by Lemmam
It is easy to see this gives the desired prime. ([l

Lemma 21.4. Let R be a nonzero ring. Then Spec(R) is connected if and only if
R has no nontrivial idempotents.

Proof. Obvious from Lemma and the definition of a connected topological
space. U

Lemma 21.5. Let I C R be a finitely generated ideal of a ring R such that I = I>.
Then

(1) there exists an idempotent e € R such that I = (e),
(2) R/I = R,/ for the idempotent ¢’ =1 —e € R, and
(3) V(I) is open and closed in Spec(R).

Proof. By Nakayama’s Lemma there exists an element f = 1+14, i € I such
that fI = 0. Then f2 = f + fi = f is an idempotent. Consider the idempotent
e=1—f=—iel. Forjelwehaveej=j— fj=jhence I = (e). This proves
(1).

Parts (2) and (3) follow from (1). Namely, we have V(I) = V(e) = Spec(R) \ D(e)
which is open and closed by either Lemmal[21.1)or Lemmal[21.3] This proves (3). For
(2) observe that the map R — R,/ is surjective since x/(e/)" = x /e’ = ze'/(e/)? =
ze'/e/ = x/1 in Re. The kernel of the map R — R, is the set of elements of
R annihilated by a positive power of ¢’. Since €’ is idempotent this is the ideal
of elements annihilated by ¢’ which is the ideal I = (e) as e+ ¢ = 1 is a pair of
orthognal idempotents. This proves (2). |

22. Connected components of spectra

Connected components of spectra are not as easy to understand as one may think
at first. This is because we are used to the topology of locally connected spaces,
but the spectrum of a ring is in general not locally connected.

Lemma 22.1. Let R be a ring. Let T C Spec(R) be a subset of the spectrum. The
following are equivalent

(1) T is closed and is a union of connected components of Spec(R),

(2) T is an intersection of open and closed subsets of Spec(R), and

(3) T =V (I) where I C R is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.

Proof. By Lemma and Topology, Lemma we see that (1) and (2) are
equivalent. Assume (2) and write T' = (U, with U, C Spec(R) open and closed.
Then U, = D(e,) for some idempotent e, € R by Lemma Then setting
I = (1—-eq) we see that T = V(I), i.e., (3) holds. Finally, assume (3). Write
T =V(I) and I = (e,) for some collection of idempotents e,. Then it is clear that
T=NV(ea) =ND(1—eqn).

Suppose that I is an ideal generated by idempotents. Let e € R be an idempotent
such that V(I) C V(e). Then by Lemma we see that e” € I for some n > 1.
As e is an idempotent this means that e € I. Hence we see that I is generated


https://stacks.math.columbia.edu/tag/00EF
https://stacks.math.columbia.edu/tag/00EH
https://stacks.math.columbia.edu/tag/04PP

COMMUTATIVE ALGEBRA 43

by exactly those idempotents e such that ' C V(e). In other words, the ideal I is
completely determined by the closed subset T' which proves uniqueness. ([

00EG |Lemmal22.2. Let R be a ring. A connected component of Spec(R) is of the form
V(I), where I is an ideal generated by idempotents such that every idempotent of
R either maps to 0 or 1 in R/I.

Proof. Let p be a prime of R. By Lemma we have see that the hypotheses
of Topology, Lemma are satisfied for the topological space Spec(R). Hence
the connected component of p in Spec(R) is the intersection of open and closed
subsets of Spec(R) containing p. Hence it equals V' (I) where [ is generated by the
idempotents e € R such that e maps to 0 in x(p), see Lemma Any idempotent
e which is not in this collection clearly maps to 1 in R/I. g

23. Glueing properties

00EN In this section we put a number of standard results of the form: if something is
true for all members of a standard open covering then it is true. In fact, it often
suffices to check things on the level of local rings as in the following lemma.

00HN Lemma 23.1. Let R be a ring.

(1) For an element x of an R-module M the following are equivalent
(a) =0,
(b) « maps to zero in M, for all p € Spec(R),
(¢) & maps to zero in My, for all maximal ideals m of R.
In other words, the map M — [],, My is injective.
(2) Given an R-module M the following are equivalent
(a) M is zero,
(b) M, is zero for all p € Spec(R),
(¢) My is zero for all mazimal ideals m of R.
(3) Given a complex My — My — Ms of R-modules the following are equivalent
(a) My — My — Ms is exact,
(b) for every prime p of R the localization M, , — M, — M3, is exact,
(c) for every mazimal ideal m of R the localization My m — Mam — M3 m
s exact.
(4) Given a map f: M — M’ of R-modules the following are equivalent
(a) f is injective,
(b) fo: My — M, is injective for all primes p of R,
(¢) fm: Mm — M, is injective for all mazimal ideals m of R.
(5) Given a map f: M — M’ of R-modules the following are equivalent
(a) f is surjective,
(b) fp: My — M, is surjective for all primes p of R,
() fm: Myw — M], is surjective for all maximal ideals m of R.
(6) Given a map f: M — M’ of R-modules the following are equivalent
(a) f is bijective,
(b) fo: My — M, is bijective for all primes p of R,
() fm : Mwm — M, is bijective for all maximal ideals m of R.
Proof. Let x € M asin (1). Let I = {f € R | fr = 0}. It is easy to see that I

is an ideal (it is the annihilator of z). Condition (1)(c) means that for all maximal
ideals m there exists an f € R\ m such that fo = 0. In other words, V(I) does not
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contain a closed point. By Lemma [I7.2] we see I is the unit ideal. Hence x is zero,
i.e., (1)(a) holds. This proves (1).

Part (2) follows by applying (1) to all elements of M simultaneously.

Proof of (3). Let H be the homology of the sequence, ie., H = Ker(Ms —
Ms3)/Im(M; — Ms). By Proposition we have that H, is the homology of
the sequence M; , — My, — M3 ,. Hence (3) is a consequence of (2).

Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining
(4) and (5). 0O

Lemmal 23.2. Let R be a ring. Let M be an R-module. Let S be an R-algebra.
Suppose that f1,..., fn is a finite list of elements of R such that | D(f;) = Spec(R),
in other words (f1,..., fn) = R.

(1) If each My, =0 then M = 0.

(2) If each My, is a finite Ry,-module, then M is a finite R-module.

(3) If each My, is a finitely presented Ry, -module, then M is a finitely presented
R-module.

(4) Let M — N be a map of R-modules. If My, — Ny, is an isomorphism for
each i then M — N is an isomorphism.

(5) Let 0 - M" — M — M' — 0 be a complex of R-modules. If 0 — M} —
My, — M} — 0 is ezact for each i, then 0 — M" — M — M’ — 0 is
exact.

(6) If each Ry, is Noetherian, then R is Noetherian.

(7) If each Sy, is a finite type R-algebra, so is S.

(8) If each Sy, is of finite presentation over R, so is S.

Proof. We prove each of the parts in turn.

(1) By Proposition @l this implies M, = 0 for all p € Spec(R), so we conclude
by Lemma [23.1}

(2) For each i take a finite generating set X; of My,. Without loss of generality,
we may assume that the elements of X; are in the image of the localization
map M — My, , so we take a finite set Y; of preimages of the elements of X;
in M. Let Y be the union of these sets. This is still a finite set. Consider
the obvious R-linear map RY — M sending the basis element ey to y.
By assumption this map is surjective after localizing at an arbitrary prime
ideal p of R, so it is surjective by Lemma and M is finitely generated.

(3) By (2) we have a short exact sequence

0O—-—K—R"—-M-—=0

Since localization is an exact functor and My, is finitely presented we see
that Ky, is finitely generated for all 1 <4 < n by Lemma By (2) this
implies that K is a finite R-module and therefore M is finitely presented.

(4) By Proposition the assumption implies that the induced morphism
on localizations at all prime ideals is an isomorphism, so we conclude by
Lemma 2311

(5) By Proposition the assumption implies that the induced sequence of
localizations at all prime ideals is short exact, so we conclude by Lemma

231
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(6) We will show that every ideal of R has a finite generating set: For this, let
I C R be an arbitrary ideal. By Proposition @ each Iy, C Ry, is an ideal.
These are all finitely generated by assumption, so we conclude by (2).

(7) For each i take a finite generating set X; of Sy,. Without loss of generality,
we may assume that the elements of X; are in the image of the localization
map S — Sy, so we take a finite set Y; of preimages of the elements of X;
in S. Let Y be the union of these sets. This is still a finite set. Consider
the algebra homomorphism R[X,],cy — S induced by Y. Since it is an
algebra homomorphism, the image T' is an R-submodule of the R-module
S, so we can consider the quotient module S/T. By assumption, this is zero
if we localize at the f;, so it is zero by (1) and therefore S is an R-algebra
of finite type.

(8) By the previous item, there exists a surjective R-algebra homomorphism
R[X1,...,X,] = S. Let K be the kernel of this map. This is an ideal in
R[X1,...,X,], finitely generated in each localization at f;. Since the f; gen-
erate the unit ideal in R, they also generate the unit ideal in R[ X1, ..., X,],
so an application of (2) finishes the proof.

O

00EP |Lemmal 23.3. Let R — S be a ring map. Suppose that g1,...,9gn s a finite list
of elements of S such that |J D(g;) = Spec(S) in other words (g1,...,9n) = S.

(1) If each Sy, is of finite type over R, then S is of finite type over R.
(2) If each Sy, is of finite presentation over R, then S is of finite presentation
over R.

Proof. Choose hq,...,h, € S such that > h;g; = 1.

Proof of (1). For each i choose a finite list of elements x; ; € Sy,, j = 1,...,m; which
generate Sy, as an R-algebra. Write z; ; = yi,j/g?i’j for some y; ; € S and some
n;; > 0. Consider the R-subalgebra S’ C S generated by ¢1,...,gn, h1,...,h, and
Yij,i=1,...,n,j =1,...,m;. Since localization is exact (Proposition [9.12), we
see that S;i — Sy, is injective. On the other hand, it is surjective by our choice of
¥i;- The elements g1,. .., g, generate the unit ideal in S” as hq,..., h, € S’. Thus
S’ — S viewed as an S’-module map is an isomorphism by Lemma [23.2]

Proof of (2). We already know that S is of finite type. Write S = R[x1,...,2m]/J
for some ideal J. For each i choose a lift ¢ € R[z1,..., 2] of g; and we choose a
lift b} € R[z1,...,%m] of h;. Then we see that

where J; is the ideal of R[z1,. .., Zm,y;] generated by J. Small detail omitted. By
Lemma we may choose a finite list of elements f; ; € J, j = 1,...,m; such that
the images of f; ; in J; and 1 — y,g; generate the ideal J; + (1 — y;g5). Set

S/:R[xlau-azm}/ (Z ;Zgiflvfi,j;i:17"'an7j:17"~7m1')

There is a surjective R-algebra map S’ — S. The classes of the elements ¢1, ..., g,
in S’ generate the unit ideal and by construction the maps S;< — S, are injective.

Thus we conclude as in part (1). O
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24. Glueing functions

In this section we show that given an open covering

spec(R) = J._ D(£)

by standard opens, and given an element h; € Ry, for each i such that h; = h; as
elements of Ry, ¢, then there exists a unique i € R such that the image of h in Ry,
is h;. This result can be interpreted in two ways:
(1) The rule D(f) — Ry is a sheaf of rings on the standard opens, see Sheaves,
Section B0l
(2) If we think of elements of R as the “algebraic” or “regular” functions on
D(f), then these glue as would continuous, resp. differentiable functions on
a topological, resp. differentiable manifold.

Lemma 24.1. Let R be a ring. Let f1,...,f, be elements of R generating the
unit tdeal. Let M be an R-module. The sequence

o n ﬁ n
0> M — @izl Mfi — @i,jzl Mfifj

is exact, where a(m) = (m/1,...,m/1) and B(m1/fi*, ... ,mn/fim) = (mi/ f{ —
m;/ £ @)

Proof. It suffices to show that the localization of the sequence at any maximal
ideal m is exact, see Lemma Since f1,..., fn generate the unit ideal, there
is an ¢ such that f; € m. After renumbering we may assume ¢ = 1. Note that
(Mf,)m = (Mw)ys, and (My, 5, )m = (Mwn)y,s,, see Proposition In particular
(Mp))m = My and (My, 5,)m = (Myw),, because fi is a unit. Note that the maps
in the sequence are the canonical ones coming from Lemma [0.7 and the identity
map on M. Having said all of this, after replacing R by Ry, M by My, and f; by
their image in R, and f; by 1 € Ry, we reduce to the case where f; = 1.
Assume f; = 1. Injectivity of « is now trivial. Let m = (m;) € @._; My, be in
the kernel of 5. Then my € My, = M. Moreover, §(m) = 0 implies that m; and
m; map to the same element of My, s, = My,. Thus a(mi) = m and the proof is
complete. O

Lemma 24.2. Let R be a ring, and let f1, fo,... fnn € R generate the unit ideal in
R. Then the following sequence is exact:

0— R— Ry — Ry,
@i fl @i,j flfJ
where the maps o : R — @, Ry, and B : @, Ry, — €, ; Ry, s, are defined as

_ E E ﬂ T _ Z; _ﬂ .
a(x)—(l,...,l) andﬂ<ffl,..., f{">_ (f,” g ZanifJ,).

? J

Proof. Special case of Lemma [24.1 O

The following we have already seen above, but we state it explicitly here for con-
venience.

Lemma 24.3. Let R be a ring. If Spec(R) = ULV with both U and V open then
R~ Ry x Ry with U = Spec(R1) and V = Spec(Rs) via the maps in Lemma [21.3
Moreover, both Ry and Ry are localizations as well as quotients of the ring R.
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Proof. By Lemma we have U = D(e) and V = D(1 —e) for some idempotent
e. By Lemma we see that R = R, x Ry _. (since clearly Req_.) = 0 so the
glueing condition is trivial; of course it is trivial to prove the product decomposition
directly in this case). The lemma follows. (]

Lemma 24.4. Let R be a ring. Let f1,..., fn € R. Let M be an R-module. Then
M — @ My, is injective if and only if

M — @izl,...,n M, mw—— (fim,..., fnm)
s injective.

Proof. The map M — ) Mjy, is injective if and only if for all m € M and

€1,...,en > 1 such that f*m = 0, ¢« = 1,...,n we have m = 0. This clearly
implies the displayed map is injective. Conversely, suppose the displayed map is
injective and m € M and eq,...,e, > 1 are such that ff'm =0,i=1,...,n. If

e; = 1 for all ¢, then we immediately conclude that m = 0 from the injectivity of
the displayed map. Next, we prove this holds for any such data by induction on
e =Y e;. The base case is e = n, and we have just dealt with this. If some e; > 1,
then set m’ = f;m. By induction we see that m’ = 0. Hence we see that f;m = 0,
i.e., we may take e; = 1 which decreases e and we win. (I

The following lemma is better stated and proved in the more general context of flat
descent. However, it makes sense to state it here since it fits well with the above.

Lemmal 24.5. Let R be a ring. Let f1,...,fn € R. Suppose we are given the
following data:

(1) For each i an Ry,-module M;.
or each pairi,j an Ry, ¢, -module isomorphism ;; : (M;)y, — (M;)y, .
2) F h pair i, j an Ry, -module i hism g = (M), M;)y

i

which satisfy the “cocycle condition” that all the diagrams

"
(Mi)f; 1

- (
(M;)

Mj fifk

Mk)fifj

commute (for all triples i, j, k). Given this data define

M = Ker <@1§Z§n Mi — ®1§i,j§n(Mi)fj)

where (my, ..., my) maps to the element whose (i, j)th entry is m;/1 —;;(m;/1).
Then the natural map M — M; induces an isomorphism My, — M;. Moreover
¥i;(m/1) = m/1 for allm € M (with obvious notation).

Proof. To show that My — M, is an isomorphism, it suffices to show that its
localization at every prime p’ of Ry, is an isomorphism, see Lemma Write
p’ = pRy, for some prime p C R, fi ¢ p, see Lemma m Since localization is
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exact (Proposition [9.12]), we see that
(Mf1 )IJ/ = MP

= Ker (@19‘9 Mi,p — @1§i,j§n((Mi)fj)p)
= Ker (@1§z§n Mi,p - @1SZ7JSTL(MZ7P>JCJ)

Here we also used Proposition Since f; is a unit in Ry, this reduces us to the
case where f; = 1 by replacing R by Ry, f; by the image of f; in R,, M by M,,
and f1 by 1.

Assume f; = 1. Then ¢y; : (My)y, — M; is an isomorphism for j = 2,...,n. If we
use these isomorphisms to identify M; = (My)y,, then we see that vy, : (M), 5, —
(My)y,y, is the canonical identification. Thus the complex

0— M — @1§i§n(M1)fi — @lgmgn(Ml)fifj

is exact by Lemma Thus the first map identifies M; with M in this case and
everything is clear. O

25. Zerodivisors and total rings of fractions
The local ring at a minimal prime has the following properties.

Lemmal 25.1. Let p be a minimal prime of a ring R. FEvery element of the
mazimal ideal of Ry is nilpotent. If R is reduced then R, is a field.

Proof. If some element z of pR,, is not nilpotent, then D(z) # 0, see Lemmam
This contradicts the minimality of p. If R is reduced, then pR, = 0 and hence it is
a field. 0

Lemma 25.2. Let R be a reduced ring. Then
(1) R is a subring of a product of fields,
(2) R =11, minima B is an embedding into a product of fields,
(3) Up minimar P s the set of zerodivisors of R.

Proof. By Lemma each of the rings R, is a field. In particular, the kernel of
the ring map R — R, is p. By Lemma we have (), p = (0). Hence (2) and (1)
are true. If zy = 0 and y # 0, then y ¢ p for some minimal prime p. Hence x € p.
Thus every zerodivisor of R is contained in (J, jipimar P- Conversely, suppose that
x € p for some minimal prime p. Then x maps to zero in Ry, hence there exists
y € R, y & p such that xy = 0. In other words, z is a zerodivisor. This finishes the
proof of (3) and the lemma. O

The total ring of fractions Q(R) of a ring R was introduced in Example

Lemma 25.3. Let R be a ring. Let S C R be a multiplicative subset consisting of
nonzerodivisors. Then Q(R) = Q(S™'R). In particular Q(R) = Q(Q(R)).

Proof. If x € S™!'R is a nonzerodivisor, and z = r/f for some r € R, f € S, then
r is a nonzerodivisor in B. Whence the lemma. O

We can apply glueing results to prove something about total rings of fractions Q(R)
which we introduced in Example 0.8
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Lemmal 25.4. Let R be a ring. Assume that R has finitely many minimal primes
q1,---,q¢, and that q1 U...Uq; is the set of zerodivisors of R. Then the total ring
of fractions Q(R) is equal to Rq, X ... X Ryq,.

Proof. There are natural maps Q(R) — Ry, since any nonzerodivisor is contained
in R\ q;. Hence a natural map Q(R) — Rq, X ... X Rg,. For any nonminimal prime
p C R we see that p ¢ q1U...Uq, by Lemmal[l5.2] Hence Spec(Q(R)) = {q1,...,q:}
(as subsets of Spec(R), see Lemma [17.5)). Therefore Spec(Q(R)) is a finite discrete
set and it follows that Q(R) = A; X ... x A; with Spec(4;) = {q;}, see Lemma
Moreover A; is a local ring, which is a localization of R. Hence A; = Ry,. O

26. Irreducible components of spectra

We show that irreducible components of the spectrum of a ring correspond to the
minimal primes in the ring.
Lemma 26.1. Let R be a ring.
(1) For a prime p C R the closure of {p} in the Zariski topology is V(p). In a
formula {p} =V (p).
(2) The irreducible closed subsets of Spec(R) are exactly the subsets V(p), with
p C R a prime.
(3) The irreducible components (see Topology, Definition [8.1) of Spec(R) are
exactly the subsets V(p), with p C R a minimal prime.

Proof. Note that if p € V(I), then I C p. Hence, clearly {p} = V(p). In particular
V(p) is the closure of a singleton and hence irreducible. The second assertion implies
the third. To show the second, let V' (I) C Spec(R) with I a radical ideal. If I is not
prime, then choose a,b € R, a,b & I with ab € I. In this case V(I,a) UV (I,b) =
V(I), but neither V(I,b) = V(I) nor V(I,a) = V(I), by Lemma [17.2] Hence V(1)
is not irreducible. (|

In other words, this lemma shows that every irreducible closed subset of Spec(R) is
of the form V(p) for some prime p. Since V(p) = {p} we see that each irreducible
closed subset has a unique generic point, see Topology, Definition[8.6] In particular,
Spec(R) is a sober topological space. We record this fact in the following lemma.

Lemma 26.2. The spectrum of a ring is a spectral space, see Topology, Definition

231
Proof. Formally this follows from Lemma and Lemma See also discus-
sion above. O

Lemma 26.3. Let R be a ring. Let p C R be a prime.
(1) the set of irreducible closed subsets of Spec(R) passing through p is in one-
to-one correspondence with primes q C R,,.
(2) The set of irreducible components of Spec(R) passing through p is in one-
to-one correspondence with minimal primes q C R,,.

Proof. Follows from Lemma and the description of Spec(Ry) in Lemma [17.5]
which shows that Spec(R,) corresponds to primes q in R with q C p. O

Lemma 26.4. Let R be a ring. Let p be a minimal prime of R. Let W C Spec(R)
be a quasi-compact open not containing the point p. Then there exists an f € R,

f €y such that D(f)NW = {.
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Proof. Since W is quasi-compact we may write it as a finite union of standard
affine opens D(g;), i = 1,...,n. Since p ¢ W we have g; € p for all i. By Lemma
each g; is nilpotent in R,. Hence we can find an f € R, f & p such that for all
i we have fg;"* = 0 for some n; > 0. Then D(f) works. O

Lemma 26.5. Let R be a ring. Let X = Spec(R) as a topological space. The
following are equivalent

1) X is profinite,

) X is Hausdorff,

) X is totally disconnected.

) every quasi-compact open of X is closed,

) there are no nontrivial inclusions between its prime ideals,
) every prime ideal is a mazximal ideal,

) every prime ideal is minimal,

) every standard open D(f) C X is closed, and

(9) add more here.

(
(2
(3
(4
(5
(6
(7
(8
9

Proof. First proof. It is clear that (5), (6), and (7) are equivalent. It is clear that
(4) and (8) are equivalent as every quasi-compact open is a finite union of standard
opens. The implication (7) = (4) follows from Lemma[26.4] Assume (4) holds. Let
p, p’ be distinet primes of R. Choose an f € p’, f & p (if needed switch p with p’).
Then p’ &€ D(f) and p € D(f). By (4) the open D(f) is also closed. Hence p and
p’ are in disjoint open neighbourhoods whose union is X. Thus X is Hausdorff and
totally disconnected. Thus (4) = (2) and (3). If (3) holds then there cannot be
any specializations between points of Spec(R) and we see that (5) holds. If X is
Hausdorft then every point is closed, so (2) implies (6). Thus (2), (3), (4), (5), (6),
(7) and (8) are equivalent. Any profinite space is Hausdorff, so (1) implies (2). If
X satisfies (2) and (3), then X (being quasi-compact by Lemma [I7.10) is profinite
by Topology, Lemma [22.2

Second proof. Besides the equivalence of (4) and (8) this follows from Lemma
and purely topological facts, see Topology, Lemma [23.8 O

27. Examples of spectra of rings
In this section we put some examples of spectra.

Example 27.1. In this example we describe X = Spec(Z[z]/(x? — 4)). Let p be
an arbitrary prime in X. Let ¢ : Z — Z[z]/(2? —4) be the natural ring map. Then,
#~1(p) is a prime in Z. If $~1(p) = (2), then since p contains 2, it corresponds to
a prime ideal in Z[z]/(2? — 4,2) = (Z/2Z)[x]/(2?) via the map Z[z]/(2® — 4) —
Z[x]/(2* —4,2). Any prime in (Z/2Z)[x]/(2?) corresponds to a prime in (Z/2Z)|x]
containing (z2). Such primes will then contain z. Since (Z/2Z) = (Z/2Z)[x]/(x)
is a field, (x) is a maximal ideal. Since any prime contains () and (z) is maximal,
the ring contains only one prime (x). Thus, in this case, p = (2,z). Now, if
#~1(p) = (q) for ¢ > 2, then since p contains ¢, it corresponds to a prime ideal in
Z[2)/(+* — 4,9) = (Z/qZ)[z]/(x* —4) via the map Z[z]/ (z* —4) — Z[z]/(z* —4,q).
Any prime in (Z/qZ)[z]/(2® — 4) corresponds to a prime in (Z/qZ)[z] containing
(22 —4) = (z — 2)(x + 2). Hence, these primes must contain either z — 2 or = + 2.
Since (Z/qZ)[z] is a PID, all nonzero primes are maximal, and so there are precisely
2 primes in (Z/qZ)[z] containing (z — 2)(x + 2), namely (x — 2) and (z + 2). In
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conclusion, there exist two primes (¢,z — 2) and (q,x + 2) since 2 # —2 € Z/(q).
Finally, we treat the case where ¢~!(p) = (0). Notice that p corresponds to a
prime ideal in Z[z] that contains (22 — 4) = (z — 2)(z + 2). Hence, p contains
either (z — 2) or (z + 2). Hence, p corresponds to a prime in Z[z]/(z — 2) or one
in Z[z]/(x + 2) that intersects Z only at 0, by assumption. Since Z[z]/(x —2) 2 Z
and Z[z]/(x+2) = Z, this means that p must correspond to 0 in one of these rings.
Thus, p = (x — 2) or p = (z + 2) in the original ring.

Example 27.2. In this example we describe X = Spec(Z[z]). Fix p € X. Let
¢ : Z — Z[r] and notice that ¢—1(p) € Spec(Z). If ¢~1(p) = (q) for ¢ a prime
number ¢ > 0, then p corresponds to a prime in (Z/(q))[z], which must be generated
by a polynomial that is irreducible in (Z/(q))[z]. If we choose a representative
of this polynomial with minimal degree, then it will also be irreducible in Z[z].
Hence, in this case p = (g, fy) where f; is an irreducible polynomial in Z[z] that
is irreducible when viewed in (Z/(q)[x]). Now, assume that ¢~'(p) = (0). In this
case, p must be generated by nonconstant polynomials which, since p is prime, may
be assumed to be irreducible in Z[x]. By Gauss’ lemma, these polynomials are also
irreducible in Q[z]. Since Q[z] is a Euclidean domain, if there are at least two
distinct irreducibles f, g generating p, then 1 = af + bg for a,b € Q[z]. Multiplying
through by a common denominator, we see that m = af + bg for a,b € Z[z] and
nonzero m € Z. This is a contradiction. Hence, p is generated by one irreducible
polynomial in Z[x].

Example 27.3. In this example we describe X = Spec(k[z,y]) when k is an arbi-
trary field. Clearly (0) is prime, and any principal ideal generated by an irreducible
polynomial will also be a prime since k[x,y] is a unique factorization domain. Now
assume p is an element of X that is not principal. Since k[z, y] is a Noetherian UFD,
the prime ideal p can be generated by a finite number of irreducible polynomials
(f1,--+y fn). Now, I claim that if f, g are irreducible polynomials in k[z, y] that are
not associates, then (f,g) N k[x] # 0. To do this, it is enough to show that f and
g are relatively prime when viewed in k(z)[y]. In this case, k(x)[y] is a Euclidean
domain, so by applying the Euclidean algorithm and clearing denominators, we
obtain p = af + bg for p,a,b € k[z]. Thus, assume this is not the case, that is,
that some nonunit h € k(x)[y] divides both f and g. Then, by Gauss’s lemma, for
some a, b € k(z) we have ah|f and bh|g for ah,bh € k[z]. By irreducibility, ah = f
and bh = g (since h ¢ k(x)). So, back in k(z)[y], f,g are associates, as 39 = f.
Since k() is the fraction field of k[xz], we can write g = % f for elements 7, s € k[x]
sharing no common factors. This implies that sg = rf in k[z,y] and so s must
divide f since k[z,y] is a UFD. Hence, s = 1 or s = f. If s = f, then r = g,
implying f, g € k[z] and thus must be units in k(x) and relatively prime in k(z)[y],
contradicting our hypothesis. If s = 1, then g = rf, another contradiction. Thus,
we must have f, g relatively prime in k(z)[y], a Euclidean domain. Thus, we have
reduced to the case p contains some irreducible polynomial p € k[z] C k[z,y]. By
the above, p corresponds to a prime in the ring k[z,y]/(p) = k(a)[y], where « is an
element algebraic over £ with minimum polynomial p. This is a PID, and so any
prime ideal corresponds to (0) or an irreducible polynomial in k(«)[y]. Thus, p is
of the form (p) or (p, f) where f is a polynomial in k[z,y] that is irreducible in the

quotient k[z,y]/(p).
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Example| 27.4. Consider the ring
R={f € Qlz] with f(0) = f(1)}.

Consider the map
v:Q[A,B] = R

defined by p(A) = 2?2 — z and p(B) = 23 — 22. Tt is easily checked that (A% — B? +
AB) C Ker(y) and that A3 — B? 4+ AB is irreducible. Assume that ¢ is surjective;
then since R is an integral domain (it is a subring of an integral domain), Ker(y)
must be a prime ideal of Q[A, B]. The prime ideals which contain (A% — B? + AB)
are (A% — B2+ AB) itself and any maximal ideal (f, g) with f, g € Q[A, B] such that
f is irreducible mod g. But R is not a field, so the kernel must be (4% — B2+ AB);
hence ¢ gives an isomorphism R — Q[A, B]/(A3 — B + AB).

To see that ¢ is surjective, we must express any f € R as a Q-coefficient polynomial
in A(z) = 22 — 2z and B(z) = 23 — 22. Note the relation zA(z) = B(z). Let
a = f(0) = f(1). Then z(z — 1) must divide f(z) — a, so we can write f(z) =
z(z—=1)g9(z) + a = A(2)g(z) + a. If deg(g) < 2, then h(z) = 12 + ¢ and f(z) =
A(z)(c1z + ¢co) + a = a1 B(2) + coA(2) + a, so we are done. If deg(g) > 2, then
by the polynomial division algorithm, we can write g(z) = A(z)h(z) + b1z + by
(deg(h) < deg(g) — 2), so f(z) = A(2)?h(z) + b1 B(2) + bpA(z). Applying division
to h(z) and iterating, we obtain an expression for f(z) as a polynomial in A(z) and
B(z); hence ¢ is surjective.

Now let a € Q, a # 0, 2,1 and consider

Ro = {f € Qlz, ——] with f(0) = J(D)}.

This is a finitely generated Q-algebra as well: it is easy to check that the functions

22— 2, 2% — 2, and aj_—_a“ + z generate R, as an Q-algebra. We have the following

inclusions:

z

R C R, C Q[z, I, RcCQlz] C Qlz ! ]
Z—aQ zZ—a

Recall (Lemma [17.5) that for a ring T and a multiplicative subset S C T, the
ring map T'— ST induces a map on spectra Spec(S~!T) — Spec(T') which is a
homeomorphism onto the subset

{p € Spec(T) | SNp =0} C Spec(T).

When S = {1, f, f?,...} for some f € T, this is the open set D(f) C T. We now
verify a corresponding property for the ring map R — R,: we will show that the
map 6 : Spec(R,) — Spec(R) induced by inclusion R C R, is a homeomorphism
onto an open subset of Spec(R) by verifying that § is an injective local homeomor-
phism. We do so with respect to an open cover of Spec(R,) by two distinguished
opens, as we now describe. For any r € Q, let ev,. : R — Q be the homomorphism
given by evaluation at r. Note that for » = 0 and r = 1 —a, this can be extended to
a homomorphism ev). : R, — Q (the latter because ﬁ is well-defined at z = 1—a,

since a # %) However, ev, does not extend to R,. Write m,. = Ker(ev,.). We have
mo = (22 — 2,2° — 2),
Mo = (2 1+a)(z—a), (>~ 1+ a)( — a)), and
mi_,=((z—1+a)(z—a),(z—14a)(z* —a)).
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To verify this, note that the right-hand sides are clearly contained in the left-hand
sides. Then check that the right-hand sides are maximal ideals by writing the
generators in terms of A and B, and viewing R as Q[A, B]/(A% — B? + AB). Note
that m, is not in the image of 8: we have

(22 = 2)%(2 — a) (“2 24 z> = (22— 2)%(a® — a) + (22 — 2)%(2 — a)z

zZ—a

The left hand side is in m, R, because (22 — 2)(z — a) is in m, and because (2% —

z)(“;_’a“ + 2) is in R,. Similarly the element (2% — 2)2?(z — a)z is in m, R, because
(22 — 2) is in R, and (2% — 2)(2 — a) is in m,. As a ¢ {0,1} we conclude that
(22 — 2)? € myR,. Hence no ideal I of R, can satisfy I N R = m,, as such an [
would have to contain (22 — 2)?, which is in R but not in m,. The distinguished
open set D((z —1+a)(z—a)) C Spec(R) is equal to the complement of the closed
set {mg,m1_q}. Then check that R;_1ta)(z—a) = (Ra)(:=1+4a)(z—a); calling this
localized ring R’, then, it follows that the map R — R’ factors as R — R, — R'.
By Lemma then, these maps express Spec(R’) C Spec(R,) and Spec(R') C
Spec(R) as open subsets; hence 0 : Spec(R,) — Spec(R), when restricted to D((z —
14 a)(z — a)), is a homeomorphism onto an open subset. Similarly,  restricted to
D((2% + 2z +2a —2)(z — a)) C Spec(R,) is a homeomorphism onto the open subset
D((2%2 + 2z +2a — 2)(z — a)) C Spec(R). Depending on whether 22 + z + 2a — 2 is
irreducible or not over Q, this former distinguished open set has complement equal
to one or two closed points along with the closed point m,. Furthermore, the ideal
in R, generated by the elements (22 + 2 + 2a — a)(z — a) and (z — 1 + a)(z — a)
is all of R,, so these two distinguished open sets cover Spec(R,). Hence in order
to show that 6 is a homeomorphism onto Spec(R) — {m,}, it suffices to show that
these one or two points can never equal m;_,. And this is indeed the case, since
1—a is a root of 22 + z + 2a — 2 if and only if a = 0 or a = 1, both of which do not
occur.

Despite this homeomorphism which mimics the behavior of a localization at an
element of R, while Q[z, 2] is the localization of Q[z] at the maximal ideal (z—a),
the ring R, is not a localization of R: Any localization S~! R results in more units
than the original ring R. The units of R are Q*, the units of Q. In fact, it is easy
to see that the units of R, are Q*. Namely, the units of Q|z, ﬁ] are c(z —a)™ for
c€ Q" and n € Z and it is clear that these are in R, only if n = 0. Hence R, has

no more units than R does, and thus cannot be a localization of R.

We used the fact that a # 0,1 to ensure that ﬁ makes sense at z = 0,1. We
used the fact that a # 1/2 in a few places: (1) In order to be able to talk about
the kernel of evy_, on R,, which ensures that m;_, is a point of R, (i.e., that R,
is missing just one point of R). (2) At the end in order to conclude that (z —a)***
can only be in R for k = ¢ = 0; indeed, if @ = 1/2, then this is in R as long as k + ¢
is even. Hence there would indeed be more units in R, than in R, and R, could
possibly be a localization of R.

28. A meta-observation about prime ideals

This section is taken from the CRing project. Let R be a ring and let S C R
be a multiplicative subset. A consequence of Lemma [I7.5] is that an ideal I C R
maximal with respect to the property of not intersecting S is prime. The reason
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is that I = R N m for some maximal ideal m of the ring S~'R. It turns out that
for many properties of ideals, the maximal ones are prime. A general method of
seeing this was developed in [LR0OS]. In this section, we digress to explain this
phenomenon.

Let R be a ring. If I is an ideal of R and a € R, we define
(I:a)={x€R|zacl}.

More generally, if J C R is an ideal, we define
(I:J)={zxeR|zxJCI}.

Lemma 28.1. Let R be a ring. For a principal ideal J C R, and for any ideal
ICJ wehavel =J(:J).

Proof. Say J = (a). Then (I : J) = (I : a). Since I C J we see that any y €
is of the form y = za for some x € (I : a). Hence I C J(I : J). Conversely, if
€ (I :a), then zJ = (za) C I, which proves the other inclusion. O

Let F be a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements in the complement of F are prime.

Definition 28.2. Let R be a ring. Let F be a set of ideals of R. We say F is
an Oka family if R € F and whenever I C R is an ideal and (I : a), (I,a) € F for
some a € R, then I € F.

Let us give some examples of Oka families. The first example is the basic example
discussed in the introduction to this section.

Example 28.3. Let R be a ring and let S be a multiplicative subset of R. We
claim that F = {I ¢ R | INS # 0} is an Oka family. Namely, suppose that
(I :a),(I,a) € F for some a € R. Then pick s € (I,a)NS and s € (I:a)NS.
Then ss’ € INS and hence I € F. Thus F is an Oka family.

Example 28.4. Let R bearing, I C R an ideal, and a € R. If (I : a) is generated
by ai,...,a, and (I,a) is generated by a, by, ..., b, with by,... b, € I, then I is
generated by aay, ..., aa,,b1, ..., by,. To see this, note that if x € I, then z € (1, a)
is a linear combination of a, by, ..., b, but the coefficient of @ must lie in (I : a).
As a result, we deduce that the family of finitely generated ideals is an Oka family.

Example 28.5. Let us show that the family of principal ideals of a ring R is an
Oka family. Indeed, suppose I C R is an ideal, a € R, and (I,a) and (I : a) are
principal. Note that (I : a) = (I : (I,a)). Setting J = (I,a), we find that J is
principal and (I : J) is too. By Lemma[28.1] we have I = J(I : J). Thus we find in
our situation that since J = (I, a) and (I : J) are principal, I is principal.

Example|28.6. Let R be aring. Let « be an infinite cardinal. The family of ideals
which can be generated by at most k elements is an Oka family. The argument is
analogous to the argument in Example and is omitted.

Example| 28.7. Let A be a ring, I C A an ideal, and a € A an element. There is
a short exact sequence 0 = A/(I : a) = A/I — A/(I,a) — 0 where the first arrow
is given by multiplication by a. Thus if P is a property of A-modules that is stable
under extensions and holds for 0, then the family of ideals I such that A/I has P
is an Oka family.
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Proposition| 28.8. If F is an Oka family of ideals, then any maximal element of
the complement of F is prime.

Proof. Suppose I ¢ F is maximal with respect to not being in F but I is not prime.
Note that I # R because R € F. Since I is not prime we can find a,b € R — I
with ab € I. It follows that (I,a) # I and (I : a) contains b ¢ I so also (I : a) # I.
Thus (! : a), (I, a) both strictly contain I, so they must belong to F. By the Oka
condition, we have I € F, a contradiction. O

At this point we are able to turn most of the examples above into a lemma about
prime ideals in a ring.

Lemmal 28.9. Let R be a ring. Let S be a multiplicative subset of R. An ideal
I C R which is mazimal with respect to the property that I NS =) is prime.

Proof. This is the example discussed in the introduction to this section. For an
alternative proof, combine Example with Proposition [28.8 (]

Lemma 28.10. Let R be a ring.

(1) Anideal I C R mazimal with respect to not being finitely generated is prime.
(2) If every prime ideal of R is finitely generated, then every ideal of R is
finitely genemtenﬂ.

Proof. The first assertion is an immediate consequence of Example[28.4and Propo-
sition 28:8 For the second, suppose that there exists an ideal I C R which is not
finitely generated. The union of a totally ordered chain {I,} of ideals that are not
finitely generated is not finitely generated; indeed, if I = |J I, were generated by
ai,...,an,, then all the generators would belong to some I, and would consequently
generate it. By Zorn’s lemma, there is an ideal maximal with respect to being not
finitely generated. By the first part this ideal is prime. ]

Lemma 28.11. Let R be a ring.

(1) An ideal I C R mazimal with respect to not being principal is prime.
(2) If every prime ideal of R is principal, then every ideal of R is principal.

Proof. The first part follows from Example and Proposition [28.8] For the
second, suppose that there exists an ideal I C R which is not principal. The union
of a totally ordered chain {I,} of ideals that not principal is not principal; indeed,
if I = JI, were generated by a, then a would belong to some I, and a would
generate it. By Zorn’s lemma, there is an ideal maximal with respect to not being
principal. This ideal is necessarily prime by the first part. O

Lemma 28.12. Let R be a ring.

(1) An ideal mazimal among the ideals which do not contain a nonzerodivisor
s prime.

(2) If R is nonzero and every nonzero prime ideal in R contains a nonzerodi-
visor, then R is a domain.

Proof. Consider the set S of nonzerodivisors. It is a multiplicative subset of R.
Hence any ideal maximal with respect to not intersecting S is prime, see Lemma
28.9) Thus, if every nonzero prime ideal contains a nonzerodivisor, then (0) is
prime, i.e., R is a domain. O

2Later we will say that R is Noetherian.
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Remark| 28.13. Let R be a ring. Let « be an infinite cardinal. By applying
Example 28.6] and Proposition [28.8] we see that any ideal maximal with respect to
the property of not being generated by x elements is prime. This result is not so
useful because there exists a ring for which every prime ideal of R can be generated
by Ny elements, but some ideal cannot. Namely, let k£ be a field, let T be a set
whose cardinality is greater than Ny and let

R = k[{xn}nZh {zt,n}tGT,nZO]/(xi7 ZtQ,na TnZtn — Zt,nfl)

This is a local ring with unique prime ideal m = (z,,). But the ideal (2 ,) cannot
be generated by countably many elements.

Example 28.14. Let R be a ring and X = Spec(R). Since closed subsets of
X correspond to radical ideas of R (Lemma we see that X is a Noetherian
topological space if and only if we have ACC for radical ideals. This holds if and
only if every radical ideal is the radical of a finitely generated ideal (details omitted).

Let
F={ICR|VI=+\/(fi,..., fn) for some n and fi,..., fn € R}.

The reader can show that F is an Oka family by using the identity

VI =/(I,a)(I :a)

which holds for any ideal I C R and any element a € R. On the other hand, if we
have a totally ordered chain of ideals {I, } none of which are in F, then the union I =
U I cannot be in F either. Otherwise v'T = \/(f1,..., fn), then f¢ € I for some e,
then f¢ € I,, for some a independent of 7, then /T, = \/(f1, ..., fn), contradiction.
Thus if the set of ideals not in F is nonempty, then it has maximal elements and
exactly as in Lemma [28.10] we conclude that X is a Noetherian topological space if

and only if every prime ideal of R is equal to \/(f1,..., fn) for some f1,..., f, € R.
If we ever need this result we will carefully state and prove this result here.

29. Images of ring maps of finite presentation

In this section we prove some results on the topology of maps Spec(S) — Spec(R)
induced by ring maps R — S, mainly Chevalley’s Theorem. In order to do this
we will use the notions of constructible sets, quasi-compact sets, retrocompact sets,
and so on which are defined in Topology, Section

Lemma 29.1. Let U C Spec(R) be open. The following are equivalent:
(1) U is retrocompact in Spec(R),
(2) U is quasi-compact,
(3) U is a finite union of standard opens, and
(4) there exists a finitely generated ideal I C R such that X \ V(I) =U.

Proof. We have (1) = (2) because Spec(R) is quasi-compact, see Lemma
We have (2) = (3) because standard opens form a basis for the topology. Proof
of 3) = (1). Let U =,_, _,, D(fi). To show that U is retrocompact in Spec(R)
it suffices to show that U NV is quasi-compact for any quasi-compact open V of
Spec(R). Write V' =J;_; _,, D(g;) which is possible by (2) = (3). Each standard
open is homeomorphic to the spectrum of a ring and hence quasi-compact, see
Lemmas @' and Thus UNV = (Uizy. ., D) N (U= D(g5)) =
Ui’ j D(f;g; is a finite union of quasi-compact opens hence quasi-compact. To
finish the proof note that (4) is equivalent to (3) by Lemma [17.2] O

Comment by Lukas
Heger of November
12, 2020.
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Lemma 29.2. Let ¢ : R — S be a ring map. The induced continuous map
f : Spec(S) — Spec(R) is quasi-compact. For any constructible set E C Spec(R)
the inverse image f~(E) is constructible in Spec(S).

Proof. We first show that the inverse image of any quasi-compact open U C
Spec(R) is quasi-compact. By Lemma we may write U as a finite open of
standard opens. Thus by Lemma we see that f~1(U) is a finite union of stan-
dard opens. Hence f~1(U) is quasi-compact by Lemma again. The second
assertion now follows from Topology, Lemma [15.3 (]

Lemma 29.3. Let R be a ring. A subset of Spec(R) is constructible if and only if
it can be written as a finite union of subsets of the form D(f) NV (g1,...,gm) for

f7gl7"'agm€R'

Proof. By Lemma the subset D(f) and the complement of V (g1, ..., gm) are
retro-compact open. Hence D(f) NV (g1,...,9m) is a constructible subset and so
is any finite union of such. Conversely, let T C Spec(R) be constructible. By
Topology, Definition we may assume that 7= U NV, where U,V C Spec(R)
are retrocompact open. By Lemma we may write U = Uz’:l,...,n D(f;) and

V= Uj:l,..‘,m D(gJ) Then T' = Ui:lt..wn (D(fl) N V(glv cee 7gm)) U

Lemma 29.4. Let R be a ring and let T C Spec(R) be constructible. Then there
exists a ring map R — S of finite presentation such that T is the image of Spec(S)
in Spec(R).

Proof. The spectrum of a finite product of rings is the disjoint union of the spectra,
see Lemma [21.2] Hence if T = T3 UT5 and the result holds for T} and T5, then the
result holds for T'. By Lemmawe may assume that T'= D(f) NV (g1,..., gm)-
In this case T is the image of the map Spec((R/(g1,...,9m))s) — Spec(R), see
Lemmas [I7.6] and 7.7 O

Lemma 29.5. Let R be a ring. Let f be an element of R. Let S = Ry. Then the
image of a constructible subset of Spec(S) is constructible in Spec(R).

Proof. We repeatedly use Lemma without mention. Let U,V be quasi-
compact open in Spec(S). We will show that the image of U N'V¢ is constructible.
Under the identification Spec(S) = D(f) of Lemma the sets U,V correspond
to quasi-compact opens U’, V' of Spec(R). Hence it suffices to show that U’ N (V')¢
is constructible in Spec(R) which is clear. O

Lemmal 29.6. Let R be a ring. Let I be a finitely generated ideal of R. Let
S = R/I. Then the image of a constructible subset of Spec(S) is constructible in

Spec(R).

Proof. If I = (f1,..., fm), then we see that V(I) is the complement of | J D(f;), see
Lemma [I7.2] Hence it is constructible, by Lemma [29.1] Denote the map R — S
by f — f. We have to show that if U,V are retrocompact opens of Spec(S),
then the image of U NV in Spec(R) is constructible. By Lemma we may
write U = |JD(g;). Setting U = |JD(g;) we see U has image U N V(I) which
is constructible in Spec(R). Similarly the image of V equals V N V(I) for some
retrocompact open V of Spec(R). Hence the image of UNV* equals UNV(I) NV

as desired. O
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Lemma 29.7. Let R be a ring. The map Spec(R[z]) — Spec(R) is open, and the
image of any standard open is a quasi-compact open.

Proof. It suffices to show that the image of a standard open D(f), f € R[z] is
quasi-compact open. The image of D(f) is the image of Spec(R[z]s) — Spec(R).
Let p C R be a prime ideal. Let f be the image of f in x(p)[z]. Recall, see Lemma
that p is in the image if and only if Rlz]; ® g #(p) = #(p)[z]5 is not the zero
ring. This is exactly the condition that f does not map to zero in k(p)[x], in other

words, that some coefficient of f is not in p. Hence we see: if f = agz? + ... + ao,
then the image of D(f) is D(aq) U...U D(ag). O

We prove a property of characteristic polynomials which will be used below.

Lemma 29.8. Let R — A be a ring homomorphism. Assume A = R®" as an R-
module. Let f € A. The multiplication map my : A — A is R-linear and hence has
a characteristic polynomial P(T) = T"+r,_1T" ' +...4+r¢ € R[T]. For any prime
p € Spec(R), f acts nilpotently on A ®pr k(p) if and only if p € V(ro,...,rn—1).

Proof. This follows quite easily once we prove that the characteristic polynomial
P(T) € k(p)[T] of the multiplication map mp: A®pg K(p) - A®g k(p) which
multiplies elements of A® gk(p) by f, the image of f viewed in x(p), is just the image
of P(T) in x(p)[T]. Let (a;;) be the matrix of the map my with entries in R, using
a basis e, ..., e, of A as an R-module. Then, A®grk(p) = (RRrk(p))®" = k(p)",
which is an n-dimensional vector space over k(p) with basis e; ®1,...,e, ® 1. The
image f = f ® 1, and so the multiplication map my has matrix (a;; ® 1). Thus,
the characteristic polynomial is precisely the image of P(T).

From linear algebra, we know that a linear transformation acts nilpotently on an n-
dimensional vector space if and only if the characteristic polynomial is 7" (since the
characteristic polynomial divides some power of the minimal polynomial). Hence,
f acts nilpotently on A ® s(p) if and only if P(T) = T™. This occurs if and only
ifr; epforall 0 <i<n-—1,that is when p € V(rg,...,7n_1). O

Lemma 29.9. Let R be a ring. Let f, g € R[x] be polynomials. Assume the leading
coefficient of g is a unit of R. There exists elements r; € R, i = 1...,n such that
the image of D(f) NV (g) in Spec(R) is U,—; ., D(r:).

Proof. Write g = uz? + ag_12%' + ... + ag, where d is the degree of g, and
hence u € R*. Consider the ring A = R[z]/(g). It is, as an R-module, finite
free with basis the images of 1,z,...,2%"!. Consider multiplication by (the image
of) f on A. This is an R-module map. Hence we can let P(T) € R[T] be the
characteristic polynomial of this map. Write P(T) = T% +ry_ 1T 1 +... +7ro. We
claim that rg,...,74—1 have the desired property. We will use below the property
of characteristic polynomials that

p e V(rg,...,mq—1) < multiplication by f is nilpotent on A ® g k(p).
This was proved in Lemma [29.8

Suppose q € D(f) N V(g), and let p = qN R. Then there is a nonzero map
A ®p k(p) — x(q) which is compatible with multiplication by f. And f acts as a
unit on k(q). Thus we conclude p & V(ro,...,74-1).
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On the other hand, suppose that r; € p for some prime p of R and some 0 < i < d—1.
Then multiplication by f is not nilpotent on the algebra A @ k(p). Hence there
exists a prime ideal § C A ®pg k(p) not containing the image of f. The inverse
image of q in R[z] is an element of D(f) NV (g) mapping to p. O

Theorem 29.10 (Chevalley’s Theorem). Suppose that R — S is of finite presen-
tation. The image of a constructible subset of Spec(S) in Spec(R) is constructible.

Proof. Write S = R[z1,...,2,])/(f1,--+, fm). We may factor R — S as R —
R[x1] — R[z1,29] — ... = R[z1,...,2,-1] — S. Hence we may assume that
S = R[z]/(f1,..-, fm)- In this case we factor the map as R — R[z] — S, and by
Lemma we reduce to the case S = R[z]. By Lemma suffices to show that
if T =(U;_y ., D(fi)) "V (g1,...,9m) for fi,g; € R[x] then the image in Spec(R)
is constructible. Since finite unions of constructible sets are constructible, it suffices
to deal with the case n =1, i.e., when T = D(f) NV (g1,-..,9gm)-

Note that if ¢ € R, then we have
Spec(R) = V(¢) I D(c) = Spec(R/(c)) I Spec(R..),

and correspondingly Spec(R[z]) = V(¢)lID(c) = Spec(R/(c)[z])ISpec(R,[x]). The
intersection of T'= D(f) NV (¢1,...,9m) with each part still has the same shape,
with f, g; replaced by their images in R/(c)[z], respectively R.[z]. Note that the
image of T' in Spec(R) is the union of the image of TNV (¢) and T N D(c). Using
Lemmas[29.5]and [29.0] it suffices to prove the images of both parts are constructible
in Spec(R/(c)), respectively Spec(R.).

Let us assume we have T = D(f) N V(g1,-..,9m) as above, with deg(g;) <
deg(g2) < ... < deg(gym). We are going to use induction on m, and on the de-
grees of the g;. Let d = deg(g1), i.e., g1 = cx®™ + l.o.t with ¢ € R not zero.
Cutting R up into the pieces R/(c) and R. we either lower the degree of ¢g; (and
this is covered by induction) or we reduce to the case where c is invertible. If
c is invertible, and m > 1, then write go = c/z% 4+ l.o.t. In this case consider
gy = g2 — (//c)x®2=%1g,. Since the ideals (g1, 92, ..., 9m) and (g1, 95,93, - Gm)
are equal we see that T'= D(f) NV (g1,95,93---,9m). But here the degree of g} is
strictly less than the degree of go and hence this case is covered by induction.

The bases case for the induction above are the cases (a) T = D(f) N V(g) where
the leading coefficient of g is invertible, and (b) T' = D(f). These two cases are
dealt with in Lemmas [29.9] and [29.7] ]

30. More on images

In this section we collect a few additional lemmas concerning the image on Spec
for ring maps. See also Section [41] for example.

Lemmal 30.1. Let R C S be an inclusion of domains. Assume that R — S is of
finite type. There exists a nonzero f € R, and a nonzero g € S such that Ry — S¢q
is of finite presentation.

Proof. By induction on the number of generators of S over R. During the proof
we may replace R by Ry and S by Sy for some nonzero f € R.

Suppose that S is generated by a single element over R. Then S = R[z]/q for some
prime ideal q C Rx]. If g = (0) there is nothing to prove. If q # (0), then let h € q
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be a nonzero element with minimal degree in . Write h = fz%+aq_129 1 +.. . +ag
with a; € R and f # 0. After inverting f in R and S we may assume that h is
monic. We obtain a surjective R-algebra map R[z]/(h) — S. We have R[z]/(h) =
RO Rr®...® Rz? ! as an R-module and by minimality of d we see that R[z]/(h)
maps injectively into S. Thus R[z]/(h) = S is finitely presented over R.

Suppose that S is generated by n > 1 elements over R. Say z1,...,x, € S generate
S. Denote S’ C S the subring generated by z1,...,z,_1. By induction hypothesis
we see that there exist f € R and g € S’ nonzero such that Ry — S}g is of finite
presentation. Next we apply the induction hypothesis to S} ¢ Stq to see that
there exist f' € S}, and g' € Sy, such that % . — Syyp/¢ is of finite presentation.
We leave it to the reader to conclude. O

Lemma 30.2. Let R — S be a finite type ring map. Denote X = Spec(R) and
Y = Spec(S). Write f : Y — X the induced map of spectra. Let E C'Y = Spec(S)
be a constructible set. If a point ¢ € X is in f(E), then {€} N f(E) contains an
open dense subset of@,

Proof. Let £ € X be a point of f(F). Choose a point n € E mapping to £. Let
p C R be the prime corresponding to £ and let ¢ C S be the prime corresponding
to 1. Consider the diagram

n——FENY ——Y' =Spec(S/q) ——Y

| |

§—— f(E)N X' —— X' =Spec(R/p) —= X

By Lemmathe set ENY” is constructible in Y. Tt follows that we may replace
X by X’ and Y by Y’. Hence we may assume that R C S is an inclusion of
domains, £ is the generic point of X, and 7 is the generic point of Y. By Lemma
combined with Chevalley’s theorem (Theorem we see that there exist
dense opens U C X, V C Y such that f(V) C U and such that f : V — U maps
constructible sets to constructible sets. Note that £ NV is constructible in V', see
Topology, Lemma @ Hence f(E NV) is constructible in U and contains . By
Topology, Lemma @ we see that f(E NV) contains a dense open U' C U. O

At the end of this section we present a few more results on images of maps on
Spectra that have nothing to do with constructible sets.

Lemmal 30.3. Let ¢ : R — S be a ring map. The following are equivalent:
(1) The map Spec(S) — Spec(R) is surjective.
(2) For any ideal I C R the inverse image of VIS in R is equal to /1.
(3) For any radical ideal I C R the inverse image of IS in R is equal to I.
(4) For every prime p of R the inverse image of pS in R is p.
In this case the same is true after any base change: Given a ring map R — R’ the
ring map R' — R' ®pr S has the equivalent properties (1), (2), (3) as well.

Proof. If J C S is an ideal, then /o =1(J) = ¢~ '(v/J). This shows that (2) and
(3) are equivalent. The implication (3) = (4) is immediate. If I C R is a radical
ideal, then Lemma m guarantees that I = [, p. Hence (4) = (2). By Lemma
we have p = ¢~ (pS) if and only if p is in the image. Hence (1) < (4). Thus
(1), (2), (3), and (4) are equivalent.
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Assume (1) holds. Let R — R’ be a ring map. Let p’ C R’ be a prime ideal lying
over the prime p of R. To see that p’ is in the image of Spec(R' ®pr S) — Spec(R')
we have to show that (R’ ®g S) @g k(p’) is not zero, see Lemma But we have

(R ®rS) @r k(p') = S @r K(P) @p(p) £(0)

which is not zero as S ®pg k(p) is not zero by assumption and x(p) — k(p’) is an
extension of fields. O

Lemmal 30.4. Let R be a domain. Let ¢ : R — S be a ring map. The following
are equivalent:

(1) The ring map R — S is injective.
(2) The image Spec(S) — Spec(R) contains a dense set of points.
(3) There exists a prime ideal ¢ C S whose inverse image in R is (0).

Proof. Let K be the field of fractions of the domain R. Assume that R — S is
injective. Since localization is exact we see that K — S ®p K is injective. Hence
there is a prime mapping to (0) by Lemma m

Note that (0) is dense in Spec(R), so that the last condition implies the second.

Suppose the second condition holds. Let f € R, f # 0. As R is a domain we see
that V' (f) is a proper closed subset of R. By assumption there exists a prime q of
S such that o(f) & q. Hence ¢(f) # 0. Hence R — S is injective. O

Lemma 30.5. Let R C S be an injective ring map. Then Spec(S) — Spec(R)
hits all the minimal primes.

Proof. Let p C R be a minimal prime. In this case R, has a unique prime ideal.
Hence it suffices to show that S, is not zero. And this follows from the fact that
localization is exact, see Proposition O

Lemma 30.6. Let R — S be a ring map. The following are equivalent:

(1) The kernel of R — S consists of nilpotent elements.
(2) The minimal primes of R are in the image of Spec(S) — Spec(R).
(3) The image of Spec(S) — Spec(R) is dense in Spec(R).

Proof. Let I = Ker(R — S). Note that 1/(0) = Nycs 9- see Lemma m Hence
VI = Ngcs BN a. Thus V(I) = V (V1) is the closure of the image of Spec(S) —
Spec(R). This shows that (1) is equivalent to (3). It is clear that (2) implies (3).
Finally, assume (1). We may replace R by R/I and S by S/IS without affecting

the topology of the spectra and the map. Hence the implication (1) = (2) follows
from Lemma [B0.5 O

Lemmal 30.7. Let R — S be a ring map. If a minimal prime p C R is in the
image of Spec(S) — Spec(R), then it is the image of a minimal prime.

Proof. Say p = qN R. Then choose a minimal prime v C .S with ¢ C ¢, see Lemma
[I7.2] By minimality of p we see that p =tN R. O
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31. Noetherian rings

A ring R is Noetherian if any ideal of R is finitely generated. This is clearly
equivalent to the ascending chain condition for ideals of R. By Lemma [28.10] it
suffices to check that every prime ideal of R is finitely generated.

Lemma 31.1. Any finitely generated ring over a Noetherian ring is Noetherian.
Any localization of a Noetherian ring is Noetherian.

Proof. The statement on localizations follows from the fact that any ideal J C
S71Ris of the form I-S~'R. Any quotient R/I of a Noetherian ring R is Noetherian
because any ideal J C R/I is of the form J/I for some ideal I C J C R. Thus
it suffices to show that if R is Noetherian so is R[X]. Suppose J; C Jp C ... is
an ascending chain of ideals in R[X]. Consider the ideals I; 4 defined as the ideal
of elements of R which occur as leading coefficients of degree d polynomials in J;.
Clearly I; 4 C Iy o whenever i <4’ and d < d'. By the ascending chain condition in
R there are at most finitely many distinct ideals among all of the I; 4. (Hint: Any
infinite set of elements of N x N contains an increasing infinite sequence.) Take i
so large that I; ¢ = I;,.q for all ¢ > iy and all d. Suppose f € J; for some i > 7.
By induction on the degree d = deg(f) we show that f € J;,. Namely, there exists
a g € J;, whose degree is d and which has the same leading coeflicient as f. By
induction f — g € J;, and we win. O

Lemma 31.2. If R is a Noetherian ring, then so is the formal power series ring

R[[.ﬁl, e ,l‘n]]

Proof. Since R[[z1,...,Zn+1]] = R[[Z1,...,2n]][[Tns1]] it suffices to prove the
statement that R[[z]] is Noetherian if R is Noetherian. Let I C R][[z]] be a ideal.
We have to show that I is a finitely generated ideal. For each integer d denote
I ={a € R|ax?+hot. € I}. Then we see that Iy C I; C ... stabilizes as R
is Noetherian. Choose dy such that I;, = Ig+1 = .... For each d < dy choose
elements fz; € I'N(2%), j = 1,...,nq such that if we write fs; = aq;2? + h.o.t
then Iy = (aq ;). Denote I' = ({ fa,; }a=o.,....do,j=1,...,ns)- Then it is clear that I’ C I.
Pick f € I. First we may choose c¢4; € R such that

f- ch,ifd,i € (@)1

Next, we can choose ¢;1 € R, i =1,...,nq, such that
f= caifai— cinzfai € (@P?)NI
Next, we can choose ¢;2 € R, i =1,...,n4, such that

f — Z Cd,ifd,i - Z Ci,ledo,i — Z Ci,gxzfdmi S (xd0+3) NI.
And so on. In the end we see that
=Y caifai+ Zi(ze Ci,e®°) faoi
is contained in I’ as desired. O

The following lemma, although easy, is useful because finite type Z-algebras come
up quite often in a technique called “absolute Noetherian reduction”.

Lemmal 31.3. Any finite type algebra over a field is Noetherian. Any finite type
algebra over Z is Noetherian.
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Proof. This is immediate from Lemma B1.1]and the fact that fields are Noetherian
rings and that Z is Noetherian ring (because it is a principal ideal domain). ([

Lemma 31.4. Let R be a Noetherian ring.
(1) Any finite R-module is of finite presentation.

(2) Any submodule of a finite R-module is finite.
(3) Any finite type R-algebra is of finite presentation over R.

Proof. Let M be a finite R-module. By Lemma we can find a finite filtration
of M whose successive quotients are of the form R/I. Since any ideal is finitely
generated, each of the quotients R/I is finitely presented. Hence M is finitely
presented by Lemma This proves (1).

Let N C M be a submodule. As M is finite, the quotient M/N is finite. Thus
M/N is of finite presentation by part (1). Thus we see that N is finite by Lemma
part (5). This proves part (2).

To see (3) note that any ideal of R[xq,...,x,] is finitely generated by Lemma
BLIl O

Lemma 31.5. If R is a Noetherian ring then Spec(R) is a Noetherian topological
space, see Topology, Definition|9.1].

Proof. This is because any closed subset of Spec(R) is uniquely of the form V(1)
with I a radical ideal, see Lemma [I7.2] And this correspondence is inclusion re-
versing. Thus the result follows from the definitions. O

Lemma 31.6. If R is a Noetherian ring then Spec(R) has finitely many irreducible
components. In other words R has finitely many minimal primes.

Proof. By Lemma [31.5] and Topology, Lemma we see there are finitely many
irreducible components. By Lemma [26.1] these correspond to minimal primes of
R. O

Lemmal 31.7. Let R — S be a ring map. Let R — R’ be of finite type. If S is
Noetherian, then the base change S’ = R' ®g S is Noetherian.

Proof. By Lemma finite type is stable under base change. Thus S — S’ is of
finite type. Since S is Noetherian we can apply Lemma [31.1 ([

Lemma 31.8. Let k be a field and let R be a Noetherian k-algebra. If K/k is a
finitely generated field extension then K ®i R is Noetherian.

Proof. Since K/k is a finitely generated field extension, there exists a finitely
generated k-algebra B C K such that K is the fraction field of B. In other words,
K = S7'B with S = B\ {0}. Then K ®; R = S™'(B ®; R). Then B ®; R is
Noetherian by Lemma Finally, K ®; R = S71(B ®; R) is Noetherian by
Lemma BT.T1 O

Here are some fun lemmas that are sometimes useful.

Lemmal 31.9. Let R be a ring and p C R be a prime. There exists an f € R,
f & v such that Ry — R, is injective in each of the following cases

(1) R is a domain,

(2) R is Noetherian, or
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(3) R is reduced and has finitely many minimal primes.

Proof. If R is a domain, then R C R,, hence f = 1 works. If R is Noetherian,
then the kernel I of R — R, is a finitely generated ideal and we can find f € R,
f & p such that IRy = 0. For this f the map Ry — R, is injective and f works.
If R is reduced with finitely many minimal primes p,...,p,, then we can choose
f€My,zpPir [ &p. Indeed, if p; ¢ p then there exist f; € p;, fi ¢ p and f=][ f;
works. For this f we have Ry C R, because the minimal primes of R; correspond
to minimal primes of R, and we can apply Lemma (some details omitted). O

Lemmal 31.10. Any surjective endomorphism of a Noetherian ring is an isomor-
phism.

Proof. If f: R — R were such an endomorphism but not injective, then

Ker(f) C Ker(fo f) CKer(fofof)C...

would be a strictly increasing chain of ideals. O

32. Locally nilpotent ideals
Here is the definition.

Definition 32.1. Let R be a ring. Let I C R be an ideal. We say I is locally
nilpotent if for every x € I there exists an n € N such that 2 = 0. We say [ is
nilpotent if there exists an n € N such that I"™ = 0.

Example 32.2. Let R = k[z,|n € N] be the polynomial ring in infinitely many
variables over a field k. Let I be the ideal generated by the elements z] for n € N
and S = R/I. Then the ideal J C S generated by the images of z,,, n € N is locally
nilpotent, but not nilpotent. Indeed, since S-linear combinations of nilpotents are
nilpotent, to prove that J is locally nilpotent it is enough to observe that all its
generators are nilpotent (which they obviously are). On the other hand, for each
n € N it holds that = | € I, so that J" # 0. It follows that J is not nilpotent.

Lemmal 32.3. Let R — R’ be a ring map and let I C R be a locally nilpotent
ideal. Then IR’ is a locally nilpotent ideal of R'.

Proof. This follows from the fact that if z,y € R’ are nilpotent, then x + y is
nilpotent too. Namely, if 2™ = 0 and y™ = 0, then (z +y)"*™ ! = 0. (]

Lemmal 32.4. Let R be a ring and let I C R be a locally nilpotent ideal. An
element x of R is a unit if and only if the image of x in R/I is a unit.

Proof. If z is a unit in R, then its image is clearly a unit in R/I. It remains to
prove the converse. Assume the image of y € R in R/I is the inverse of the image
of x. Then zy = 1 — 2 for some z € I. This means that 1 = z modulo zR. Since z
lies in the locally nilpotent ideal I, we have 2 = 0 for some sufficiently large N.
It follows that 1 = 1V = 2V = 0 modulo zR. In other words, z divides 1 and is
hence a unit. ]

Lemma 32.5. Let R be a Noetherian ring. Let I,J be ideals of R. Suppose

J C\I. Then J* C I for some n. In particular, in a Noetherian ring the notions
of “locally nilpotent ideal” and “nilpotent ideal” coincide.
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Proof. Say J = (f1,...,fs). By assumption ff" €l Taken=di+do+ ...+
ds + 1. O

Lemmal 32.6. Let R be a ring. Let I C R be a locally nilpotent ideal. Then
R — R/I induces a bijection on idempotents.

First proof of Lemma As T is locally nilpotent it is contained in every
prime ideal. Hence Spec(R/I) = V(I) = Spec(R). Hence the lemma follows from
Lemma [21.3] (]

Second proof of Lemma Suppose € € R/I is an idempotent. We have to
lift € to an idempotent of R.

First, choose any lift f € R of €, and set x = f2 — f. Then, x € I, so z is nilpotent
(since I is locally nilpotent). Let now J be the ideal of R generated by z. Then, J
is nilpotent (not just locally nilpotent), since it is generated by the nilpotent x.

Now, assume that we have found a lift e € R of € such that e2 — e € J* for some
k>1. Let ¢ =e— (2¢ —1)(e? — ) = 3¢2 — 2¢3, which is another lift of & (since
the idempotency of € yields e? — e € I). Then

()2 —€ = (4e® —de — 3)(e? —e)? € J*
by a simple computation.

We thus have started with a lift e of € such that €2 — e € J*, and obtained a
lift e’ of & such that (e’)? — ¢’ € J?*. This way we can successively improve the
approximation (starting with e = f, which fits the bill for £ = 1). Eventually,
we reach a stage where J* = 0, and at that stage we have a lift e of € such that
€2 —e e J¥ =0, that is, this e is idempotent.

We thus have seen that if € € R/T is any idempotent, then there exists a lift of €
which is an idempotent of R. It remains to prove that this lift is unique. Indeed,
let e; and ey be two such lifts. We need to show that e; = es.

By definition of e; and e;, we have e; = es mod I, and both e; and es are idempo-
tent. From e; = e mod I, we see that e; —ea € I, so that e; — e is nilpotent (since
I is locally nilpotent). A straightforward computation (using the idempotency of
e1 and es) reveals that (e; — 62)3 = e1 — es. Using this and induction, we obtain
(e1 — e2)¥ = e1 — ey for any positive odd integer k. Since all high enough k satisfy
(e1 —e2)® = 0 (since e; — ey is nilpotent), this shows e; — es = 0, so that e; = eq,
which completes our proof. ([l

Lemmal 32.7. Let A be a possibly noncommutative algebra. Let e € A be an
element such that © = e — e is nilpotent. Then there exists an idempotent of the
form e =e+ (> a;je'al) € A with a; j € Z.

Proof. Consider the ring R,, = Z[e]/((e* —e)™). It is clear that if we can prove the
result for each R, then the lemma follows. In R,, consider the ideal I = (e? — e)
and apply Lemma [32.6] O

Lemma 32.8. Let R be a ring. Let I C R be a locally nilpotent ideal. Let n > 1
be an integer which is invertible in R/I. Then

(1) the nth power map 1+1 — 141, 1+x+— (1+x)" is a bijection,

(2) a unit of R is a nth power if and only if its image in R/I is an nth power.
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Proof. Let a € R be a unit whose image in R/I is the same as the image of b"
with b € R. Then b is a unit (Lemma [32.4) and ab™" = 1 + x for some = € I.
Hence ab™™ = ¢™ by part (1). Thus (2) follows from (1).

Proof of (1). This is true because there is an inverse to the map 1+ x — (1 4 x)™.
Namely, we can consider the map which sends 1 + x to

A+a)/m =1+ (1{n>m + <1én>m2 + (1é”)x3 ¥

1—n 1—n)(1—-2n

as in elementary calculus. This makes sense because the series is finite as z* = 0
for all £ > 0 and each coefficient (1{6") € Z[1/n] (details omitted; observe that n is
invertible in R by Lemma . (]

1
=1+-—a+
n

33. Curiosity

Lemma explains what happens if V' (I) is open for some ideal I C R. But what
if Spec(S™1R) is closed in Spec(R)? The next two lemmas give a partial answer.
For more information see Section [[08

Lemmal 33.1. Let R be a ring. Let S C R be a multiplicative subset. Assume the
image of the map Spec(S™1R) — Spec(R) is closed. Then S™*R = R/I for some
ideal I C R.

Proof. Let I = Ker(R — S™'R) so that V(I) contains the image. Say the image
is the closed subset V(I’) C Spec(R) for some ideal I’ C R. So V(I') Cc V(I). For
f €I we see that f/1 € S™!R is contained in every prime ideal. Hence f™ maps
to zero in ST1R for some n > 1 (Lemma . Hence V(I') = V(I). Then this
implies every g € S is invertible mod I. Hence we get ring maps R/I — S~'R and
S R — R/I. The first map is injective by choice of I. The second is the map
SR — STY(R/I) = R/I which has kernel S~'I because localization is exact.
Since S~!I = 0 we see also the second map is injective. Hence ST'R= R/I. [0

Lemmal 33.2. Let R be a ring. Let S C R be a multiplicative subset. Assume
the image of the map Spec(S™'R) — Spec(R) is closed. If R is Noetherian, or
Spec(R) is a Noetherian topological space, or S is finitely generated as a monoid,
then R= S™'R x R’ for some ring R'.

Proof. By Lemma we have S™'R = R/I for some ideal I C R. By Lemma
it suffices to show that V(I) is open. If R is Noetherian then Spec(R) is a
Noetherian topological space, see Lemma If Spec(R) is a Noetherian topo-
logical space, then the complement Spec(R) \ V(I) is quasi-compact, see Topol-
ogy, Lemma [12.13] Hence there exist finitely many fi,...,fn, € I such that
V(I)=V(fi,..., fn). Since each f; maps to zero in S™!R there exists a g € S such
that gf; = 0 for ¢ = 1,...,n. Hence D(g) = V(I) as desired. In case S is finitely
generated as a monoid, say S is generated by g1,. .., gm, then STIR = Ry, .. 4, and
we conclude that V/(I) = D(g;1 ... gm)- O

34. Hilbert Nullstellensatz

Theorem 34.1 (Hilbert Nullstellensatz). Let k be a field.
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(1) For any mazimal idealm C k[x1, ..., x,] the field extension k(m)/k is finite.
(2) Any radical ideal I C k[z1,...,x,] is the intersection of maximal ideals
containing it.

The same is true in any finite type k-algebra.

Proof. It is enough to prove part of the theorem for the case of a polynomial
algebra k[x1,...,2,], because any finitely generated k-algebra is a quotient of such
a polynomial algebra. We prove this by induction on n. The case n = 0 is clear.
Suppose that m is a maximal ideal in k[x1, ..., x,]. Let p C k[z,] be the intersection
of m with k[z,].

If p # (0), then p is maximal and generated by an irreducible monic polynomial P
(because of the Euclidean algorithm in k[z,]). Then k¥’ = k[x,]/p is a finite field
extension of k and contained in x(m). In this case we get a surjection

Klzi,...,xn1] = Klz1, ... 2] = K @k k[z1, ..., 2,] — K(m)

and hence we see that «(m) is a finite extension of &’ by induction hypothesis. Thus
k(m) is finite over k as well.

If p = (0) we consider the ring extension k[z,] C k[z1,...,2,]/m. This is a finitely
generated ring extension, hence of finite presentation by Lemmas and
Thus the image of Spec(k[z1,...,z,]/m) in Spec(k[z,]) is constructible by Theo-
rem Since the image contains (0) we conclude that it contains a standard
open D(f) for some f € k[z,] nonzero. Since clearly D(f) is infinite we get a
contradiction with the assumption that k[z1,...,2,]/m is a field (and hence has a
spectrum consisting of one point).

Proof of . Let I C R be a radical ideal, with R of finite type over k. Let f € R,
f € I. We have to find a maximal ideal m C R with I C m and f ¢ m. The ring
(R/I)y is nonzero, since 1 = 0 in this ring would mean f” € I and since I is radical
this would mean f € I contrary to our assumption on f. Thus we may choose a
maximal ideal m’ in (R/I)y, see Lemma Let m C R be the inverse image of
m’ in R. We see that I C m and f & m. If we show that m is a maximal ideal of R,
then we are done. We clearly have

k C R/m C k(m').

By part the field extension x(m’)/k is finite. Hence R/m is a field by Fields,
Lemma Thus m is maximal and the proof is complete. [

Lemmal 34.2. Let R be a ring. Let K be a field. If R C K and K is of finite type
over R, then there exists an f € R such that Ry is a field, and K/Ry is a finite
field extension.

Proof. By Lemma there exist a nonempty open U C Spec(R) contained in
the image {(0)} of Spec(K) — Spec(R). Choose f € R, f # 0 such that D(f) C U,
i.e., D(f) = {(0)}. Then Ry is a domain whose spectrum has exactly one point and
Ry is a field. Then K is a finitely generated algebra over the field R; and hence a
finite field extension of R; by the Hilbert Nullstellensatz (Theorem . O
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35. Jacobson rings

Let R be a ring. The closed points of Spec(R) are the maximal ideals of R. Often
rings which occur naturally in algebraic geometry have lots of maximal ideals. For
example finite type algebras over a field or over Z. We will show that these are
examples of Jacobson rings.

Definition 35.1. Let R be a ring. We say that R is a Jacobson ring if every
radical ideal I is the intersection of the maximal ideals containing it.

Lemmal 35.2. Any algebra of finite type over a field is Jacobson.
Proof. This follows from Theorem [34.1] and Definition [35.11 (I

Lemma 35.3. Let R be a ring. If every prime ideal of R is the intersection of the
mazimal ideals containing it, then R is Jacobson.

Proof. This is immediately clear from the fact that every radical ideal I C R is
the intersection of the primes containing it. See Lemma [I7.2] O

Lemma 35.4. A ring R is Jacobson if and only if Spec(R) is Jacobson, see
Topology, Definition |18.1].

Proof. Suppose R is Jacobson. Let Z C Spec(R) be a closed subset. We have
to show that the set of closed points in Z is dense in Z. Let U C Spec(R) be an
open such that U N Z is nonempty. We have to show ZNU contains a closed point
of Spec(R). We may assume U = D(f) as standard opens form a basis for the
topology on Spec(R). According to Lemma we may assume that Z = V(I),
where [ is a radical ideal. We see also that f ¢ I. By assumption, there exists a
maximal ideal m C R such that I C m but f € m. Hencem € D(f)NV([)=UNZ
as desired.

Conversely, suppose that Spec(R) is Jacobson. Let I C R be a radical ideal. Let
J = Nrcmm be the intersection of the maximal ideals containing I. Clearly J
is a radical ideal, V(J) C V(I), and V(J) is the smallest closed subset of V(I)
containing all the closed points of V(I). By assumption we see that V(J) = V(I).
But Lemma shows there is a bijection between Zariski closed sets and radical
ideals, hence I = J as desired. ([l

Lemma 35.5. Let R be a ring. If R is not Jacobson there exist a prime p C R,
an element f € R such that the following hold

(1) p is not a mazimal ideal,

2) f&p,

(3) V(s) N D(f) = {p}, and

(4) (R/p)s is a field.
On the other hand, if R is Jacobson, then for any pair (p, f) such that (1) and (2)
hold the set V(p) N D(f) is infinite.

Proof. Assume R is not Jacobson. By Lemma this means there exists an
closed subset T C Spec(R) whose set Ty C T of closed points is not dense in T
Choose an f € R such that Ty C V(f) but T ¢ V(f). Note that TN D(f) is
homeomorphic to Spec((R/I)s) if T = V(I), see Lemmas and As any
ring has a maximal ideal (Lemma we can choose a closed point ¢ of space
T N D(f). Then t corresponds to a prime ideal p C R which is not maximal (as
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t & Tp). Thus (1) holds. By construction f & p, hence (2). As ¢ is a closed point of
T N D(f) we see that V(p) N D(f) = {p}, i-e., (3) holds. Hence we conclude that
(R/p)s is a domain whose spectrum has one point, hence (4) holds (for example

combine Lemmas and [25.1)).

Conversely, suppose that R is Jacobson and (p, f) satisfy (1) and (2). If V(p) N
D(f)=A4p,q1,.-.,9:} then p # q; implies there exists an element g € R such that
g & p but g € q; for all i. Hence V(p) N D(fg) = {p} which is impossible since each
locally closed subset of Spec(R) contains at least one closed point as Spec(R) is a
Jacobson topological space. O

Lemma 35.6. The ring Z is a Jacobson ring. More generally, let R be a ring
such that

(1) R is a domain,

(2) R is Noetherian,

(3) any nonzero prime ideal is a maximal ideal, and
(4) R has infinitely many mazimal ideals.

Then R is a Jacobson ring.

Proof. Let R satisfy (1), (2), (3) and (4). The statement means that (0) =
MM Since R has infinitely many maximal ideals it suffices to show that any
nonzero x € R is contained in at most finitely many maximal ideals, in other
words that V(z) is finite. By Lemma we see that V(x) is homeomorphic to
Spec(R/zR). By assumption (3) every prime of R/zR is minimal and hence cor-
responds to an irreducible component of Spec(R/zR) (Lemma [26.1). As R/zR is
Noetherian, the topological space Spec(R/xR) is Noetherian (Lemma[31.5) and has
finitely many irreducible components (Topology, Lemma [0.2). Thus V() is finite
as desired. O

Example 35.7. Let A be an infinite set. For each « € A, let k, be a field. We
claim that R = [] .4 ko is Jacobson. First, note that any element f € R has the
form f = ue, with v € R a unit and e € R an idempotent (left to the reader). Hence
D(f) = D(e), and Ry = R. = R/(1—e) is a quotient of R. Actually, any ring with
this property is Jacobson. Namely, say p C R is a prime ideal and f € R, f & p.
We have to find a maximal ideal m of R such that p C m and f ¢ m. Because Ry
is a quotient of R we see that any maximal ideal of Ry corresponds to a maximal
ideal of R not containing f. Hence the result follows by choosing a maximal ideal
of Ry containing pR;.

Example| 35.8. A domain R with finitely many maximal ideals m;, i = 1,...,n
is not a Jacobson ring, except when it is a field. Namely, in this case (0) is not the
intersection of the maximal ideals (0) Zm;NmaN...NM, Dmy Mo -...-m, # 0.

In particular a discrete valuation ring, or any local ring with at least two prime
ideals is not a Jacobson ring.

Lemmal35.9. Let R — S be a ring map. Letm C R be a mazimal ideal. Let q C S
be a prime ideal lying over m such that k(q)/k(m) is an algebraic field extension.
Then q is a mazimal ideal of S.
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Proof. Consider the diagram

i‘f S/q r(q)
R——= R/m

We see that x(m) C S/q C k(q). Because the field extension x(m) C k(q) is
algebraic, any ring between x(m) and x(q) is a field (Fields, Lemma [8.10). Thus
S/q is a field, and a posteriori equal to x(q). O

Lemma 35.10. Suppose that k is a field and suppose that V' is a nonzero vector
space over k. Assume the dimension of V' (which is a cardinal number) is smaller
than the cardinality of k. Then for any linear operator T : V. — V there exists
some monic polynomial P(t) € k[t] such that P(T') is not invertible.

Proof. If not then V inherits the structure of a vector space over the field k().
But the dimension of k(t) over k is at least the cardinality of k for example due to

the fact that the elements ﬁ are k-linearly independent. (I

Here is another version of Hilbert’s Nullstellensatz.

Theorem 35.11. Let k be a field. Let S be a k-algebra generated over k by the
elements {x;}icr. Assume the cardinality of I is smaller than the cardinality of k.
Then

(1) for all mazimal ideals m C S the field extension k(m)/k is algebraic, and
(2) S is a Jacobson ring.

Proof. If I is finite then the result follows from the Hilbert Nullstellensatz, The-
orem In the rest of the proof we assume [ is infinite. It suffices to prove the
result for m C k[{z;}icr] maximal in the polynomial ring on variables z;, since S
is a quotient of this. As I is infinite the set of monomials x! ... 27", 41,...,i, € [
and ey, ..., e, > 0 has cardinality at most equal to the cardinality of I. Because the
cardinality of I x ... x I is the cardinality of I, and also the cardinality of |J,,~, 1™
has the same cardinality. (If I is finite, then this is not true and in that case this
proof only works if k is uncountable.)

To arrive at a contradiction pick T' € k(m) transcendental over k. Note that the
k-linear map T : k(m) — k(m) given by multiplication by T" has the property that
P(T) is invertible for all monic polynomials P(t) € k[t]. Also, x(m) has dimension
at most the cardinality of I over k since it is a quotient of the vector space k[{x; }ic1]
over k (whose dimension is #I as we saw above). This is impossible by Lemma

B5.10

To show that S is Jacobson we argue as follows. If not then there exists a prime
q C S and an element f € S, f & q such that q is not maximal and (S/q) is a field,
see Lemma But note that (S/q)s is generated by at most #1I + 1 elements.
Hence the field extension (S/q)s/k is algebraic (by the first part of the proof). This
implies that x(q) is an algebraic extension of k hence g is maximal by Lemma
This contradiction finishes the proof. O

Lemmal 35.12. Let k be a field. Let S be a k-algebra. For any field extension
K/k whose cardinality is larger than the cardinality of S we have
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(1) for every mazimal ideal m of Sk the field k(m) is algebraic over K, and
(2) Sk is a Jacobson ring.

Proof. Choose k C K such that the cardinality of K is greater than the cardinality
of S. Since the elements of S generate the K-algebra Sk we see that Theorem [35.11
applies. O

Example| 35.13. The trick in the proof of Theorem really does not work
if k is a countable field and I is countable too. Let k be a countable field. Let
x be a variable, and let k(x) be the field of rational functions in z. Consider the
polynomial algebra R = k[z,{Zf} rerfz)—fo1]- Let I = ({fxs — 1} perfz)—{0}). Note
that I is a proper ideal in R. Choose a maximal ideal I C m. Then k£ C R/m is
isomorphic to k(z), and is not algebraic over k.

Lemma 35.14. Let R be a Jacobson ring. Let f € R. The ring Ry is Jacobson
and mazimal ideals of Ry correspond to mazimal ideals of R not containing f.

Proof. By Topology, Lemma we see that D(f) = Spec(Ry) is Jacobson and
that closed points of D(f) correspond to closed points in Spec(R) which happen to
lie in D(f). Thus Ry is Jacobson by Lemma O

Example 35.15. Here is a simple example that shows Lemma to be false
if R is not Jacobson. Consider the ring R = Z(y), i.e., the localization of Z at the
prime (2). The localization of R at the element 2 is isomorphic to Q, in a formula:
Ry = Q. Clearly the map R — Rs maps the closed point of Spec(Q) to the generic
point of Spec(R).

Example 35.16. Here is a simple example that shows Lemma is false if R
is Jacobson but we localize at infinitely many elements. Namely, let R = Z and
consider the localization (R\ {0}) 'R = Q of R at the set of all nonzero elements.
Clearly the map Z — Q maps the closed point of Spec(Q) to the generic point of

Spec(Z).

Lemma 35.17. Let R be a Jacobson ring. Let I C R be an ideal. The ring R/I is
Jacobson and mazimal ideals of R/I correspond to maximal ideals of R containing
1.

Proof. The proof is the same as the proof of Lemma [35.14 (]

Lemma 35.18. Let R be a Jacobson ring. Let K be a field. Let R C K and K is
of finite type over R. Then R is a field and K/R is a finite field extension.

Proof. First note that R is a domain. By Lemma we see that Ry is a field and
K/Ry is a finite field extension for some nonzero f € R. Hence (0) is a maximal
ideal of Ry and by Lemma [35.14] we conclude (0) is a maximal ideal of R. O

Proposition|35.19. Let R be a Jacobson ring. Let R — S be a ring map of finite
type. Then

(1) The ring S is Jacobson.

(2) The map Spec(S) — Spec(R) transforms closed points to closed points.

(3) For m’ C S maximal lying over m C R the field extension k(m')/k(m) is
finite.
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Proof. Let m’ C S be a maximal ideal and RN m’ = m. Then R/m — S/m’
satisfies the conditions of Lemma|35.18| by Lemma [35.17] Hence R/m is a field and
m a maximal ideal and the induced residue field extension is finite. This proves (2)
and (3).

If S is not Jacobson, then by Lemma there exists a non-maximal prime ideal
qof Sand an g € S, g & q such that (S/q), is a field. To arrive at a contradiction
we show that q is a maximal ideal. Let p = qN R. Then R/p — (S/q), satisfies
the conditions of Lemma by Lemma Hence R/p is a field and the field
extension k(p) — (S/q)y = £(q) is finite, thus algebraic. Then q is a maximal ideal
of S by Lemma Contradiction. O

Lemmal 35.20. Any finite type algebra over Z is Jacobson.

Proof. Combine Lemma [35.6] and Proposition [35.19 ([

Lemmal 35.21. Let R — S be a finite type ring map of Jacobson rings. Denote
X = Spec(R) and Y = Spec(S). Write f : Y — X the induced map of spectra. Let
E CY = Spec(S) be a constructible set. Denote with a subscript o the set of closed
points of a topological space.

(1) We have f(E)o = f(Eo) = XoN f(E). o
(2) A point £ € X is in f(E) if and only if {£} N f(Ey) is dense in {£}.

Proof. We have a commutative diagram of continuous maps

EFE——Y

L

Suppose x € f(E) is closed in f(E). Then f~!'({z}) N E is nonempty and closed
in E. Applying Topology, Lemma to both inclusions

f*{zy)NECECY

we find there exists a point y € f~({z}) N E which is closed in Y. In other words,
there exists y € Yy and y € Ey mapping to z. Hence z € f(Fp). This proves that
f(E)o C f(Ey). Proposition [35.19 implies that f(Ey) C Xo N f(E). The inclusion
XoN f(E) C f(E)o is trivial. This proves the first assertion.

Suppose that £ € f(E). According to Lemma m the set f(E) N {€} contains a
dense open subset of {£}. Since X is Jacobson we conclude that f(F)N{¢} contains
a dense set of closed points, see Topology, Lemma We conclude by part (1)
of the lemma.

On the other hand, suppose that {€} N f(Ep) is dense in {£}. By Lemma m
there exists a ring map S — S’ of finite presentation such that E is the image of
Y’ := Spec(S’) — Y. Then Ey is the image of Y by the first part of the lemma
applied to the ring map S — S’. Thus we may assume that F =Y by replacing S
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by S’. Suppose £ corresponds to p C R. Consider the diagram
S——=5/pS

|

R——=R/p

This diagram and the density of f(Yp) NV (p) in V(p) shows that the morphism
R/p — S/pS satisfies condition (2) of Lemma[30.4] Hence we conclude there exists
a prime q C S/pS mapping to (0). In other words the inverse image q of § in S
maps to p as desired. O

The conclusion of the lemma above is that we can read off the image of f from the
set of closed points of the image. This is a little nicer in case the map is of finite
presentation because then we know that images of a constructible is constructible.
Before we state it we introduce some notation. Denote Constr(X) the set of con-
structible sets. Let R — S be a ring map. Denote X = Spec(R) and Y = Spec(S).
Write f : Y — X the induced map of spectra. Denote with a subscript o the set of
closed points of a topological space.

Lemma 35.22. With notation as above. Assume that R is a Noetherian Jacobson
ring. Further assume R — S is of finite type. There is a commutative diagram

Constr(Y) i Constr(Yp)
iEHf(E) iEHf(E)
E—Eq
Constr(X) —— Constr(Xy)
where the horizontal arrows are the bijections from Topology, Lemma[18.8

Proof. Since R — S is of finite type, it is of finite presentation, see Lemma
Thus the image of a constructible set in X is constructible in Y by Chevalley’s
theorem (Theorem [29.10]). Combined with Lemma [35.21| the lemma follows. ([l

To illustrate the use of Jacobson rings, we give the following two examples.

Example 35.23. Let k be a field. The space Spec(k[z, y]/(xy)) has two irreducible
components: namely the z-axis and the y-axis. As a generalization, let

R= k[In,5171279321,I22,y11,y12,yzl,yzz]/a,

where a is the ideal in k[z11, 12, 221, T22, Y11, Y12, Y21, Y22 generated by the entries

of the 2 x 2 product matrix
r11 T12 Y11 Y12
€21 T22 Y21 Y22 '

In this example we will describe Spec(R).

To prove the statement about Spec(k[z,y]/(zy)) we argue as follows. If p C k[z, ]
is any ideal containing xy, then either x or y would be contained in p. Hence the
minimal such prime ideals are just (z) and (y). In case k is algebraically closed,
the max-Spec of these components can then be visualized as the point sets of y-
and z-axis.


https://stacks.math.columbia.edu/tag/00GE
https://stacks.math.columbia.edu/tag/00GF

COMMUTATIVE ALGEBRA 74

For the generalization, note that we may identify the closed points of the spectrum
of k[x11,X12, T21, T22, Y11, Y12, Y21, Y22]) with the space of matrices

{(X, Y) € Mat(2, k) x Mat(2,k) | X = <x11 xw) Y = (yu yu)}

T21  X22 Y21 Y22

at least if k is algebraically closed. Now define a group action of GL(2,k) x
GL(2, k) x GL(2, k) on the space of matrices {(X,Y)} by

(91,92,93) X (X, Y) = (1 Xg5 ", 92Y g5 )).

Here, also observe that the algebraic set

GL(2, k) x GL(2, k) x GL(2, k) C Mat(2, k) x Mat(2, k) x Mat(2, k)

is irreducible since it is the max spectrum of the domain

klzi1, 212, .., 221, 222, ($11~T22—$12$21)71, (y11y22—y12y21)71, (211222—212221)71]'

Since the image of irreducible an algebraic set is still irreducible, it suffices to
classify the orbits of the set {(X,Y) € Mat(2, k) x Mat(2,k)|XY = 0} and take
their closures. From standard linear algebra, we are reduced to the following three

cases:

(1)

3(g1,g2) such that g1 Xgy ' = Izxp. Then Y is necessarily 0, which as an
algebraic set is invariant under the group action. It follows that this or-
bit is contained in the irreducible algebraic set defined by the prime ideal
(Y11, Y12, Y21, Y22 ). Taking the closure, we see that (y11, Y12, Y21, Y22) is ac-

tually a component.
1 _ (1 0
ng.gQ - (O 0 .

(g1, 92) such that
This case occurs if and only if X is a rank 1 matrix, and furthermore, Y is
killed by such an X if and only if

T11Y11 + T12y21 = 0;  T11y12 + T12Yy22 = O;

To1Y11 + Tazyor = 0;  T21y12 + Tazyaz = 0.
Fix a rank 1 X, such non zero Y’s satisfying the above equations form an
irreducible algebraic set for the following reason(Y = 0 is contained the
previous case): 0= g1Xgy 1goY implies that

0 0
Y = .
92 (yél yéz)

With a further GL(2, k)-action on the right by g3, g2Y can be brought into

_ 0 0
gQYg?, ! = <O 1) )

and thus such Y’s form an irreducible algebraic set isomorphic to the im-
age of GL(2,k) under this action. Finally, notice that the “rank 1" con-
dition for X’s forms an open dense subset of the irreducible algebraic set
det X = x11299 — 12221 = 0. It now follows that all the five equations
define an irreducible component (z11y11 + T12Y21, 11Y12 + T12Y22, T21y11 +
T22Y21, T21Y12 + T22Y22,X11T22 — Ilglligl) in the open subset of the space
of pairs of nonzero matrices. It can be shown that the pair of equations
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det X = 0, detY = 0 cuts Spec(R) in an irreducible component with the
above locus an open dense subset.

(3) 3(g1,92) such that g; Xg; ' = 0, or equivalently, X = 0. Then Y can be
arbitrary and this component is thus defined by (211, 12, 221, Z22).

Example 35.24. For another example, consider R = k[{t;;}};_;]/a, where a is
the ideal generated by the entries of the product matrix 72 — T, T = (tij). From
linear algebra, we know that under the GL(n, k)-action defined by g, T + ¢Tg~1, T
is classified by the its rank and each T is conjugate to some diag(1,...,1,0,...,0),
which has r 1’s and n—r 0’s. Thus each orbit of such a diag(1,...,1,0,...,0) under
the group action forms an irreducible component and every idempotent matrix
is contained in one such orbit. Next we will show that any two different orbits
are necessarily disjoint. For this purpose we only need to cook up polynomial
functions that take different values on different orbits. In characteristic 0 cases,
such a function can be taken to be f(t;;) = trace(T) = >, t;. In positive
characteristic cases, things are slightly more tricky since we might have trace(T) = 0
even if T # 0. For instance, char = 3

1
trace 1 =3=0
1
Anyway, these components can be separated using other functions. For instance, in

the characteristic 3 case, tr(A%T) takes value 1 on the components corresponding
to diag(1,1,1) and 0 on other components.

36. Finite and integral ring extensions
Trivial lemmas concerning finite and integral ring maps. We recall the definition.

Definition 36.1. Let ¢ : R — S be a ring map.
(1) An element s € S is integral over R if there exists a monic polynomial
P(z) € R[z] such that P?(s) = 0, where P¥(z) € S[z] is the image of P
under ¢ : R[z] — S[x].
(2) The ring map ¢ is integral if every s € S is integral over R.

Lemmal 36.2. Let ¢ : R — S be a ring map. Let y € S. If there exists a finite
R-submodule M of S such that 1 € M and yM C M, then y is integral over R.

Proof. Consider the map ¢ : M — M, x — y - x. By Lemma there exists a
monic polynomial P € R[T] with P(¢) = 0. In the ring S we get P(y) = P(y) -1 =
P(p)(1) = 0. O

Lemma 36.3. A finite ring extension is integral.

Proof. Let R — S be finite. Let y € S. Apply Lemma to M = S to see that
y is integral over R. U

Lemma 36.4. Let ¢ : R — S be a ring map. Let s1,...,s, be a finite set of
elements of S. In this case s; is integral over R for all i =1,...,n if and only if
there exists an R-subalgebra S’ C S finite over R containing all of the s;.

Proof. If each s; is integral, then the subalgebra generated by ¢(R) and the s;
is finite over R. Namely, if s; satisfies a monic equation of degree d; over R,

then this subalgebra is generated as an R-module by the elements s{* ... sé with
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0 < e; <d; — 1. Conversely, suppose given a finite R-subalgebra S’ containing all
the s;. Then all of the s; are integral by Lemma [36.3] O
Lemmal 36.5. Let R — S be a ring map. The following are equivalent

(1) R— S is finite,

(2) R— S is integral and of finite type, and

(3) there exist x1,...,x, € S which generate S as an algebra over R such that
each x; is integral over R.
Proof. Clear from Lemma [36.4] O

Lemmal 36.6. Suppose that R — S and S — T are integral ring maps. Then
R — T is integral.

Proof. Let t € T. Let P(x) € S[x] be a monic polynomial such that P(t) = 0.
Apply Lemma[36.4] to the finite set of coefficients of P. Hence t is integral over some
subalgebra S’ C S finite over R. Apply Lemma again to find a subalgebra
T’ C T finite over S’ and containing ¢. Lemma applied to R — S' — T'
shows that T” is finite over R. The integrality of ¢ over R now follows from Lemma
190. 3! ([l

Lemma 36.7. Let R — S be a ring homomorphism. The set
= {s € S| s is integral over R}
is an R-subalgebra of S.
Proof. This is clear from Lemmas 6.4 and [36.3 O

Lemmal 36.8. Let R; — S; be ring maps i = 1,...,n. Let R and S denote the
product of the R; and S; respectively. Then an element s = (s1,...,8,) € S is
integral over R if and only if each s; is integral over R;.

Proof. Omitted. O

Definition 36.9. Let R — S be a ring map. The ring S’ C S of elements integral
over R, see Lemma is called the integral closure of R in S. If R C S we say
that R is integrally closed in S if R = S’.

In particular, we see that R — S is integral if and only if the integral closure of R
in S is all of S.

Lemmal 36.10. Let R; — S; be ring maps i = 1,...,n. Denote the integral
closure of R; in S; by Si. Further let R and S denote the product of the R; and
S; respectively. Then the integral closure of R in S is the product of the Si. In
particular R — S is integrally closed if and only if each R; — S; is integrally closed.

Proof. This follows immediately from Lemma [36.8 ([

Lemmal 36.11. Integral closure commutes with localization: If A — B is a ring

map, and S C A is a multiplicative subset, then the integral closure of S™'A in
S™1B is ST'B’, where B' C B is the integral closure of A in B.

Proof. Since localization is exact we see that S™'B’ ¢ S~!B. Suppose = € B’
and f € S. Then 2% +>,_, ,a;2%"*=0in B for some a; € A. Hence also

.....

(/D" 3, gl /)
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in S7!B. In this way we see that S™1B’ is contained in the integral closure of
S71Ain S~!B. Conversely, suppose that x/f € S™1B is integral over S~'A. Then
we have

x/f -‘rz GZ/fz (Z‘/f)

in S~'B for some a; € A and f; € S. ThlS means that
(f'fi-. fax) -I-Z Vft T fra(f A fam) T =0
for a suitable f/ € S. Hence f f1 ... fax € B"and thus z/f € S~ B’ as desired. 0

Lemmal 36.12. Let o : R — S be a ring map. Let x € S. The following are
equivalent:

(1) « is integral over R, and
(2) for every prime ideal p C R the element x € S, is integral over R,,.

Proof. It is clear that (1) implies (2). Assume (2). Consider the R-algebra S’ C S
generated by ¢(R) and z. Let p be a prime ideal of R. Then we know that
at+ 3 gela)z?™t =0 in S, for some a; € Ry. Hence we see, by looking
at which denominators occur, that for some f € R, f &€ p we have a; € Ry and
zd + Diet.d ¢(a;)z?* = 0 in Sy. This implies that S is finite over Ry. Since
p was arbitrary and Spec(R) is quasi-compact (Lemma we can find finitely
many elements f1,..., f, € R which generate the unit 1deal of R such that 5/, 7, 1s
finite over Ry,. Hence we conclude from Lemma“ 23.2[that S’ is finite over R. Hence
x is integral over R by Lemma [36.4] O

Lemmal 36.13. Let R — S and R — R’ be ring maps. Set 8" = R' ®r S.
(1) If R — S is integral so is R’ — 5.
(2) If R — S is finite so is R’ — 5.

Proof. We prove (1). Let s; € S be generators for S over R. Each of these satisfies
a monic polynomial equation P; over R. Hence the elements 1 ®s; € S’ generate S’
over R' and satisfy the corresponding polynomial P/ over R’. Since these elements
generate S’ over R’ we see that S’ is integral over R’. Proof of (2) omitted. O

Lemmal 36.14. Let R — S be a ring map. Let f1,..., fn € R generate the unit
ideal.

(1) If each Ry, — Sy, is integral, so is R — S.

(2) If each Ry, — Sy, is finite, so is R — S.

Proof. Proof of (1). Let s € S. Consider the ideal I C R[z] of polynomials P such
that P(s) = 0. Let J C R denote the ideal (!) of leading coefficients of elements
of I. By assumption and clearing denominators we see that f;** € J for all ¢ and
certain n; > 0. Hence J contains 1 and we see s is integral over R. Proof of (2)
omitted. O

Lemmal 36.15. Let A — B — C be ring maps.

(1) If A — C is integral so is B — C.
(2) If A— C is finite so is B — C.

Proof. Omitted. O
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Lemmal 36.16. Let A — B — C be ring maps. Let B’ be the integral closure of
A in B, let C’ be the integral closure of B’ in C. Then C’ is the integral closure of
AinC.

Proof. Omitted. O

Lemmal 36.17. Suppose that R — S is an integral ring extension with R C S.
Then ¢ : Spec(S) — Spec(R) is surjective.

Proof. Let p C R be a prime ideal. We have to show pS, # Sy, see Lemma
17.9] The localization R, — S, is injective (as localization is exact) and integral
by Lemma or Hence we may replace R, S by R,, Sy, and we may
agsume R is local with maximal ideal m and it suffices to show that mS # S.
Suppose 1 = " f;s; with f; € m and s; € S in order to get a contradiction. Let
R Cc 8 C S be such that R — S’ is finite and s; € S’, see Lemma [36.4. The
equation 1 =Y f;s; implies that the finite R-module S’ satisfies S’ = mS’. Hence
by Nakayama’s Lemma we see S’ = 0. Contradiction. O

Lemma 36.18. Let R be a ring. Let K be a field. If R C K and K is integral
over R, then R is a field and K is an algebraic extension. If R C K and K 1is finite
over R, then R is a field and K is a finite algebraic extension.

Proof. Assume that R C K is integral. By Lemma [36.17| we see that Spec(R) has
1 point. Since clearly R is a domain we see that R = Ry is a field (Lemma [25.1]).
The other assertions are immediate from this. 0

Lemmal 36.19. Let k be a field. Let S be a k-algebra over k.

(1) If S is a domain and finite dimensional over k, then S is a field.
(2) If S is integral over k and a domain, then S is a field.
(3) If S is integral over k then every prime of S is a mazimal ideal (see Lemma

for more consequences).

Proof. The statement on primes follows from the statement “integral + domain
= field”. Let S integral over k and assume S is a domain, Take s € S. By Lemma
we may find a finite dimensional k-subalgebra k C S’ C S containing s. Hence
S is a field if we can prove the first statement. Assume S finite dimensional over k
and a domain. Pick s € S. Since S is a domain the multiplication map s: .S — S
is surjective by dimension reasons. Hence there exists an element s; € S such that
ssy = 1. So S is a field. O

Lemma 36.20. Suppose R — S is integral. Let q,q" € Spec(S) be distinct primes
having the same image in Spec(R). Then neither q C q' nor ¢’ C q.

Proof. Let p C R be the image. By Remark the primes q,q’ correspond to
ideals in S ®@pg k(p). Thus the lemma follows from Lemma [36.19 O

Lemma 36.21. Suppose R — S is finite. Then the fibres of Spec(S) — Spec(R)
are finite.

Proof. By the discussion in Remark the fibres are the spectra of the rings
S®grk(p). As R — S is finite, these fibre rings are finite over x(p) hence Noetherian

by Lemma By Lemma [36.20| every prime of S ®g k(p) is a minimal prime.
Hence by Lemma [31.6] there are at most finitely many. O
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Lemma 36.22. Let R — S be a ring map such that S is integral over R. Let
p Cp' C R be primes. Let q be a prime of S mapping to p. Then there exists a
prime q with q C q' mapping to p’.

Proof. We may replace R by R/p and S by S/q. This reduces us to the situation
of having an integral extension of domains R C S and a prime p’ C R. By Lemma
36.17 we win. (Il

The property expressed in the lemma above is called the “going up property” for
the ring map R — S, see Definition

Lemma 36.23. Let R — S be a finite and finitely presented ring map. Let M
be an S-module. Then M is finitely presented as an R-module if and only if M is
finitely presented as an S-module.

Proof. One of the implications follows from Lemma [6.4] To see the other assume
that M is finitely presented as an S-module. Pick a presentation

SOm 99 s M —5 0

As S is finite as an R-module, the kernel of S®™ — M is a finite R-module. Thus
from Lemma we see that it suffices to prove that S is finitely presented as an
R-module.

Pick y1,...,yn € S such that yi,...,y, generate S as an R-module. By Lemma
each y; is integral over R. Choose monic polynomials P;(z) € R[z] with
Pi(y;) = 0. Consider the ring

S" = R[z1,...,2,]/(Pi(z1), ..., Pu(zy))

Then we see that S is of finite presentation as an S’-algebra by Lemma Since
S’ — S is surjective, the kernel J = Ker(S’ — S) is finitely generated as an ideal by
Lemma Hence J is a finite S’-module (immediate from the definitions). Thus
S = Coker(.J — §) is of finite presentation as an S’-module by Lemma[5.3] Hence,
arguing as in the first paragraph, it suffices to show that S’ is of finite presentation
as an R-module. Actually, S’ is free as an R-module with basis the monomials
7t oxlr for 0 < e; < deg(P;). Namely, write R — S” as the composition

R — R[x1]/(Pi(x1)) — Rlz1,22)/(Pi(21), Pa(22)) = ... = S
This shows that the ith ring in this sequence is free as a module over the (i — 1)st

one with basis 1, z;, ... ,x?eg(Pi)fl. The result follows easily from this by induction.

Some details omitted. O

Lemma 36.24. Let R be a ring. Let x,y € R be nonzerodivisors. Let R[x/y] C
Ry be the R-subalgebra generated by x/y, and similarly for the subalgebras R[y/x]
and Rlz/y,y/x]). If R is integrally closed in R, or R,, then the sequence
—1,1 1,1
0— R Rlafyl @ Rly/a] S Rla/y,y/a] — 0
is a short exact sequence of R-modules.

Proof. Since z/y-y/x =1 it is clear that the map R[z/y] ® R[y/x] — R[z/y,y/x]
is surjective. Let @ € R[z/y] N R[y/x]. To show exactness in the middle we have
to prove that o € R. By assumption we may write

a=ay+az/y+...+an(x/y)" =bo+biy/z+ ... +byu(y/z)"
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for some n,m > 0 and a;,b; € R. Pick some N > max(n,m). Consider the finite
R-submodule M of R,, generated by the elements

(/)™ /)Ny Ly (/)N (/)Y
We claim that aM C M. Namely, it is clear that (x/y)'(by + biy/x + ... +
b (y/x)™) € M for 0 < i < N and that (y/z)"(ag + a12/y + ... + an(z/y)") € M
for 0 <i < N. Hence « is integral over R by Lemma Note that a € Ry, so if
R is integrally closed in R, then o € R as desired. O

37. Normal rings

We first introduce the notion of a normal domain, and then we introduce the (very
general) notion of a normal ring.

Definition 37.1. A domain R is called normal if it is integrally closed in its field
of fractions.

Lemma 37.2. Let R — S be a ring map. If S is a normal domain, then the
integral closure of R in S is a normal domain.

Proof. Omitted. O

The following notion is occasionally useful when studying normality.

Definition 37.3. Let R be a domain.

(1) An element g of the fraction field of R is called almost integral over R if
there exists an element r € R, r # 0 such that r¢g"™ € R for all n > 0.

(2) The domain R is called completely normal if every almost integral element
of the fraction field of R is contained in R.

The following lemma shows that a Noetherian domain is normal if and only if it is
completely normal.

Lemmal 37.4. Let R be a domain with fraction field K. If u,v € K are almost
integral over R, then so are u+v and uv. Any element g € K which is integral over
R is almost integral over R. If R is Noetherian then the converse holds as well.

Proof. If ru™ € R for all n > 0 and v"r’ € R for all n > 0, then (uwv)"rr’ and
(u 4+ v)*rr’ are in R for all n > 0. Hence the first assertion. Suppose g € K
is integral over R. In this case there exists an d > 0 such that the ring R[g| is
generated by 1,g,...,¢% as an R-module. Let r € R be a common denominator of
the elements 1,g,...,g? € K. It is follows that 7R[g] C R, and hence g is almost
integral over R.

Suppose R is Noetherian and g € K is almost integral over R. Let r € R, r # 0 be
as in the definition. Then R[g] C +R as an R-module. Since R is Noetherian this
implies that R][g] is finite over R. Hence g is integral over R, see Lemma O

Lemma 37.5. Any localization of a normal domain is normal.

Proof. Let R be a normal domain, and let S C R be a multiplicative subset.
Suppose g is an element_ of the fraction field of R which is integral over S™!R.
Let P = 2%+ 3., a;27 be a polynomial with a; € S™'R such that P(g) = 0.
Choose s € S such that sa; € R for all i. Then sg satisfies the monic polynomial
zd + Zj<d s?Ja;27 which has coefficients s?~7a; in R. Hence sg € R because R
is normal. Hence g € S™'R. a
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Lemma 37.6. A principal ideal domain is normal.

Proof. Let R be a principal ideal domain. Let g = a/b be an element of the
fraction field of R integral over R. Because R is a principal ideal domain we may
divide out a common factor of a and b and assume (a,b) = R. In this case, any
equation (a/b)"™ +r,_1(a/b)" 1 + ... 4+ 1o = 0 with r; € R would imply a” € (b).
This contradicts (a,b) = R unless b is a unit in R. O

Lemma 37.7. Let R be a domain with fraction field K. Suppose f = >_ a2’ is
an element of K|x].

(1) If f is integral over R[z] then all oy are integral over R, and
(2) If f is almost integral over R[x] then all o; are almost integral over R.

Proof. We first prove the second statement. Write f = ag+ 12+ ...+ a,x" with
a, # 0. By assumption there exists h = by + byz + ... + bsz® € R[z], bs # 0 such
that f™h € R[z] for all n > 0. This implies that bsal* € R for all n > 0. Hence a
is almost integral over R. Since the set of almost integral elements form a subring
(Lemma we deduce that f — 2" = ag + a1z + ... + a,_12" ! is almost
integral over R[x]. By induction on r we win.

In order to prove the first statement we will use absolute Noetherian reduction.
Namely, write a; = a;/b; and let P(t) = t¢ + Zj<d [t be a polynomial with
coefficients f; € R[] such that P(f) =0. Let f; = > fj;z’. Consider the subring
Ry C R generated by the finite list of elements a;,b;, fj; of R. It is a domain; let
K be its field of fractions. Since Ry is a finite type Z-algebra it is Noetherian, see
Lemma It is still the case that f € Ky[z] is integral over Ry[z], because all
the identities in R among the elements a;, b;, fj; also hold in Ry. By Lemma
the element f is almost integral over Ry[z]. By the second statement of the lemma,
the elements a; are almost integral over Ry. And since Ry is Noetherian, they are
integral over Ry, see Lemma [37.4] Of course, then they are integral over R. O

Lemma 37.8. Let R be a normal domain. Then R[z] is a normal domain.

Proof. The result is true if R is a field K because K|[z] is a euclidean domain
and hence a principal ideal domain and hence normal by Lemma Let g be
an element of the fraction field of R[z] which is integral over R[x]. Because g is
integral over K|[x] where K is the fraction field of R we may write g = agz? +
ag_12¢ M+ +ag with a; € K. By Lemmamthe elements «; are integral over
R and hence are in R. (]

Lemma 37.9. Let R be a Noetherian normal domain. Then R][[x]] is a Noetherian
normal domain.

Proof. The power series ring is Noetherian by Lemma Let f,g € R][z]] be
nonzero elements such that w = f/g is integral over R[[z]]. Let K be the fraction
field of R. Since the ring of Laurent series K ((z)) = K[[z]][1/] is a field, we can
write w = apx" + app 2"+ .) for some n € Z, a; € K, and a,, # 0. By Lemma
we see there exists a nonzero element h = by, 2™ + by, 12™ ! + ... in R[[z]]
with b, # 0 such that weh € R[[z]] for all e > 1. We conclude that n > 0 and that
bmal, € R for all e > 1. Since R is Noetherian this implies that a,, € R by the same
lemma. Now, if a,,an41,...,an—1 € R, then we can apply the same argument to
w—anx" — ... —an_12V P =ayz™ +.... In this way we see that all a; € R and
the lemma is proved. ([l
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Lemma 37.10. Let R be a domain. The following are equivalent:

(1) The domain R is a normal domain,
(2) for every prime p C R the local Ting Ry, is a normal domain, and
(3) for every mazimal ideal m the ring Ry is a normal domain.

Proof. This follows easily from the fact that for any domain R we have

R:ﬂmRm

inside the fraction field of R. Namely, if g is an element of the right hand side then
the ideal I = {# € R | zg € R} is not contained in any maximal ideal m, whence
I =R. |

Lemma shows that the following definition is compatible with Definition [37.1
(It is the definition from EGA — see [DG6T7, IV, 5.13.5 and 0, 4.1.4].)

Definition 37.11. A ring R is called normal if for every prime p C R the local-
ization R, is a normal domain (see Definition [37.1]).

Note that a normal ring is a reduced ring, as R is a subring of the product of its
localizations at all primes (see for example Lemma [23.1]).

Lemma 37.12. A normal ring is integrally closed in its total ring of fractions.

Proof. Let R be a normal ring. Let € Q(R) be an element of the total ring of
fractions of R integral over R. Set I = {f € R, fx € R}. Let p C R be a prime.
As R — R, is flat we see that R, C Q(R) ®r Rp. As R, is a normal domain we
see that  ® 1 is an element of R,. Hence we can find a, f € R, f & p such that
z®1=a®1/f. This means that fo —a maps to zero in Q(R) ®r Ry = Q(R),,
which in turn means that there exists an f' € R, f' &€ p such that f'fx = f'a in
R. In other words, ff’ € I. Thus I is an ideal which isn’t contained in any of the
prime ideals of R, i.e., I = R and =z € R. O

Lemma 37.13. A localization of a normal ring is a normal ring.
Proof. Omitted. (]
Lemma 37.14. Let R be a normal ring. Then R[z] is a normal ring.

Proof. Let q be a prime of R[z]. Set p = RNq. Then we see that R,[z] is a normal
domain by Lemma m Hence (R][z])q is a normal domain by Lemmam g

Lemma 37.15. A finite product of normal rings is normal.

Proof. It suffices to show that the product of two normal rings, say R and .S,
is normal. By Lemma [21.3] the prime ideals of R x S are of the form p x S and
R x q, where p and q are primes of R and S respectively. Localization yields
(R x S)pxs = R, which is a normal domain by assumption. Similarly for S. O

Lemmal 37.16. Let R be a ring. Assume R is reduced and has finitely many
minimal primes. Then the following are equivalent:

(1) R is a normal ring,
(2) R is integrally closed in its total ring of fractions, and
(3) R is a finite product of normal domains.
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Proof. The implications (1) = (2) and (3) = (1) hold in general, see Lemmas

37.12| and 37,15

Let p1,...,pn be the minimal primes of R. By Lemmas [25.2] and [25.4) we have
Q(R) = Ry, X ... x Ry, and by Lemma each factor is a field. Denote e; =
0,...,0,1,0,...,0) the ith idempotent of Q(R).

If R is integrally closed in Q(R), then it contains in particular the idempotents
e, and we see that R is a product of n domains (see Sections [22] and P4). Each
factor is of the form R/p,; with field of fractions R,,. By Lemma [36.10| each map
R/p; = Ry, is integrally closed. Hence R is a finite product of normal domains. O

Lemma 37.17. Let (R;, piir) be a directed system (Categories, Deﬁm’tion of
rings. If each R; is a normal ring so is R = colim; R;.

Proof. Let p C R be a prime ideal. Set p;, = R; Np (usual abuse of notation).
Then we see that R, = colim;(R;),,. Since each (R;),, is a normal domain we
reduce to proving the statement of the lemma for normal domains. If a,b € R
and a/b satisfies a monic polynomial P(T) € R[T], then we can find a (sufficiently
large) i € I such that a,b come from objects a;, b; over R;, P comes from a monic
polynomial P; € R;[T] and P;(a;/b;) = 0. Since R; is normal we see a;/b; € R; and
hence also a/b € R. O

38. Going down for integral over normal

We first play around a little bit with the notion of elements integral over an ideal,
and then we prove the theorem referred to in the section title.

Definition 38.1. Let ¢ : R — S be a ring map. Let I C R be an ideal.
We say an element g € S is integral over I if there exists a monic polynomial
P=xd+ > j<q a2’ with coefficients a; € 1473 such that P®(g) =0 in S.

This is mostly used when ¢ = idg : R — R. In this case the set I’ of elements
integral over I is called the integral closure of I. We will see that I’ is an ideal of
R (and of course I C I').

Lemmal 38.2. Let ¢ : R — S be a ring map. Let I C R be an ideal. Let
A = > I"t"™ C RJt] be the subring of the polynomial ring generated by R& It C RJ[t].
An element s € S is integral over I if and only if the element st € S[t] is integral
over A.

Proof. Suppose st is integral over A. Let P = 2% + Zj<d ajz? be a monic poly-
nomial with coefficients in A such that P¥(st) = 0. Let a; € A be the degree d — j
part of a;, in other words a; = af t9=7 with aj €1 d=7_ For degree reasons we still
have (st)? + > j<d @(a;’)td_j (st)? = 0. Hence we see that s is integral over I.

Suppose that s is integral over I. Say P = % + > jcq @52’ with a; € 193, Then
we immediately find a polynomial Q = x? + Zj<d(ajtd_j)acj with coefficients in A
which proves that st is integral over A. O

Lemma 38.3. Let p: R — S be a ring map. Let I C R be an ideal. The set of
elements of S which are integral over I form a R-submodule of S. Furthermore, if
s € S is integral over R, and s’ is integral over I, then ss’ is integral over I.
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Proof. Closure under addition is clear from the characterization of Lemma 3821
Any element s € S which is integral over R corresponds to the degree 0 element s
of S[x] which is integral over A (because R C A). Hence we see that multiplication
by s on S[x] preserves the property of being integral over A, by Lemma O

Lemmal 38.4. Suppose ¢ : R — S is integral. Suppose I C R is an ideal. Then
every element of 1S is integral over I.

Proof. Immediate from Lemma BS.3 O

Lemma 38.5. Let K be a field. Let n,m € N and ag,...,apn—-1,b9,-..,bpm_1 € K.
If the polynomial ™+ a,_12" ' +...+aqg divides the polynomial ™ +b,,_12™ 1 +
...+ by in K[x] then

(1) aog,...,an—1 are integral over any subring Ry of K containing the elements
bo,...,bm_1, and

(2) each a; lies in +/(bo,...,bpm—1)R for any subring R C K containing the

elements ag,...,ap—1,b0,...,bm—1-

Proof. Let L/K be a field extension such that we can write 2™ + byp_1x™ L +
st bo =12, (z — B;) with 8; € L. See Fields, Section Each 3; is integral
over Ry. Since each a; is a homogeneous polynomial in 3y, ..., 3, we deduce the
same for the a; (use Lemma [36.7)).

Choose cg,...,Cm_n_1 € K such that

2™+ b1z 4 by =
(" 4+ ap_12" o4 a) (@™ + 1™ L+ ).

By part (1) the elements ¢; are integral over R. Consider the integral extension

RCR = R[Co, ey Cm—n—l] CK
By Lemmas and we see that RN \/(bo7 ciiybm1)R = \/(bo, ooy bm—1)R.

Thus we may replace R by R’ and assume ¢; € R. Dividing out the radical
/(bo, ..., bm—1) we get a reduced ring R. We have to show that the images @; € R
are zero. And in R[x] we have the relation

" =™ 4 by 1™ by =
(@™ + Tz P+ )@ F Cp 2T L+ ).

It is easy to see that this implies @; = 0 for all . Indeed by Lemma the
localization of R at a minimal prime p is a field and Ry[z] a UFD. Thus f =
z" + > @x’ is associated to 2™ and since f is monic f = 2™ in Ry[z]. Then there
exists an s € R, s ¢ p such that s(f —2"™) = 0. Therefore all @; lie in p and we
conclude by Lemma [25.2 |

Lemmal 38.6. Let R C S be an inclusion of domains. Assume R is normal. Let
g € S be integral over R. Then the minimal polynomial of g has coefficients in R.

Proof. Let P = 2™ + b,,_12™ ! +... + by be a polynomial with coefficients in R
such that P(g) = 0. Let Q@ = 2™ + a,, 12" +...+ ap be the minimal polynomial
for g over the fraction field K of R. Then @ divides P in K[z]. By Lemma we
see the a; are integral over R. Since R is normal this means they are in R. (]


https://stacks.math.columbia.edu/tag/00H5
https://stacks.math.columbia.edu/tag/00H6
https://stacks.math.columbia.edu/tag/00H7

00HS8

00H9

00HB

0BBY

COMMUTATIVE ALGEBRA 85

Proposition 38.7. Let R C S be an inclusion of domains. Assume R is normal
and S integral over R. Let p C p' C R be primes. Let ' be a prime of S with
p' = RNq'. Then there exists a prime q with q C q' such that p = RNq. In other
words: the going down property holds for R — S, see Definition [{1.1]

Proof. Let p, p’ and q’ be as in the statement. We have to show there is a prime
q, with q C q" and RNq = p. This is the same as finding a prime of S;; mapping to
p. According to Lemma we have to show that pSyy N R = p. Pick z € pSq N R.
We may write z = y/g with y € pS and g € S, g € q'. Written differently we have
zg =y.

By Lemma there exists a monic polynomial P = 2™ + b,,_12™ ' + ... + by
with b; € p such that P(y) = 0.

By Lemma [38.6] the minimal polynomial of g over K has coefficients in R. Write
itas Q =2" +a,_12" '+ ... +ap. Note that not all @;, i =n—1,...,0 are in p
since that would imply ¢" = Zj<n ajg’ € pS C p'S C q' which is a contradiction.
Since y = zg we see immediately from the above that Q' = 2" + za,, 12" ! +
...+ 2™ag is the minimal polynomial for y. Hence @’ divides P and by Lemma
We see that z7a,—; € \/(bo,...,bm—1) C P, j = 1,...,n. Because not all a;,
t=n—1,...,0 are in p we conclude z € p as desired. O

39. Flat modules and flat ring maps

One often used result is that if M = colim;c7z M; is a colimit of R-modules and if
N is an R-module then

M & N = colimiez Ml QR N,
see Lemma [12.9] This property is usually expressed by saying that ® commutes

with colimits. Another often used result is that if 0 — N; — Ny — N3 — 0 is an
exact sequence and if M is any R-module, then

M ®r N1 - M Q@r No - M ®r N3 — 0

is still exact, see Lemma [I2.10] Both of these properties tell us that the functor
N — M ®pg N is right exact. See Categories, Section [23| and Homology, Section
An R-module M is flat if N — N ®g M is also left exact, i.e., if it is exact. Here
is the precise definition.

Definition 39.1. Let R be a ring.

(1) An R-module M is called flat if whenever Ny — Nz — Nj is an exact
sequence of R-modules the sequence M ®g N1 = M @z No — M ®p N3 is
exact as well.

(2) An R-module M is called faithfully flat if the complex of R-modules N; —
Ny — Nj is exact if and only if the sequence M ®r Ny — M ®r Ny —
M ®pr N3 is exact.

(3) A ring map R — S is called flat if S is flat as an R-module.

(4) A ring map R — S is called faithfully flat if S is faithfully flat as an R-
module.

Here is an example of how you can use the flatness condition.

Lemmal 39.2. Let R be a ring. Let I,J C R be ideals. Let M be a flat R-module.
Then IMNJM = (INJ)M.
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Proof. Consider the exact sequence 0 - INJ — R — R/I® R/J. Tensoring with
the flat module M we obtain an exact sequence

0—=IUNJ)@rM — M — M/IM & M/JM
Since the kernel of M — M/IM & M/JM is equal to IM N JM we conclude. O

Lemma 39.3. Let R be a ring. Let {M;, .} be a directed system of flat R-
modules. Then colim; M; is a flat R-module.

Proof. This follows as ® commutes with colimits and because directed colimits
are exact, see Lemma [8.8] O

Lemma 39.4. A composition of (faithfully) flat ring maps is (faithfully) flat. If
R — R’ is (faithfully) flat, and M’ is a (faithfully) flat R'-module, then M’ is a
(faithfully) flat R-module.

Proof. The first statement of the lemma is a particular case of the second, so it is
clearly enough to prove the latter. Let R — R’ be a flat ring map, and M’ a flat R’'-
module. We need to prove that M’ is a flat R-module. Let Ny — Ny — N3 be an
exact complex of R-modules. Then, the complex ' @ g N1 — R'®r Ny — R'®@r N3
is exact (since R’ is flat as an R-module), and so the complex M'®p (R’ ® g N1) —
M' @p (R ®r Na) = M' @p (R’ ®g N3) is exact (since M’ is a flat R'-module).
Since M’ X R (R/ XRnr N) = (M/ KRpr R/) ®Rr N = M’ ®Rr N for any R-module N
functorially (by Lemmas and , this complex is isomorphic to the complex
M' ®r N1 - M' ®r No — M’ ®@r N3, which is therefore also exact. This shows
that M’ is a flat R-module. Tracing this argument backwards, we can show that if
R — R’ is faithfully flat, and if M’ is faithfully flat as an R’-module, then M’ is
faithfully flat as an R-module. O

Lemma 39.5. Let M be an R-module. The following are equivalent:

(1) M is flat over R.
(2) for every injection of R-modules N C N’ the map N ®@r M — N' ®@g M is
injective.
(3) for every ideal I C R the map I g M — R®@r M = M is injective.
(4) for every finitely generated ideal I C R the map I @g M - RQr M = M
18 injective.
Proof. The implications implies implies implies are all trivial. Thus
we prove implies (1. Suppose that Ny — Ny — Nj is exact. Let K =
Ker(No — N3) and @ = Im(N2 — N3). Then we get maps
NyQR@rM > K®QrM — No@r M — Qg M — N3 Qr M

Observe that the first and third arrows are surjective. Thus if we show that the
second and fourth arrows are injective, then we are doneﬂ Hence it suffices to show

that — ® g M transforms injective R-module maps into injective R-module maps.

3Here is the argument in more detail: Assume that we know that the second and fourth arrows
are injective. Lemma (applied to the exact sequence K — No — @ — 0) yields that the
sequence K g M — N2 Qg M — Q ® g M — 0 is exact. Hence, Ker (N2 @g M — Q Qg M) =
Im(K®R M — No RRr M) Since Im(K®R M — No QR M) = Im(N1 ®RM — No R M)
(due to the surjectivity of Nt g M — K ®r M) and Ker (Na ®r M — Q®r M) =
Ker (N2 ®g M — N3 ®r M) (due to the injectivity of Q ® g M — N3 ®r M), this be-
comes Ker (N2 @ g M — N3 ®r M) = Im (N1 ®g M — N2 @ g M), which shows that the functor
— ®pr M is exact, whence M is flat.
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Assume K — N is an injective R-module map and let € Ker(K@rM — NQrM).
We have to show that x is zero. The R-module K is the union of its finite R-
submodules; hence, K ® g M is the colimit of R-modules of the form K; ® r M where
K; runs over all finite R-submodules of K (because tensor product commutes with
colimits). Thus, for some 4 our = comes from an element z; € K; ® g M. Thus we
may assume that K is a finite R-module. Assume this. We regard the injection
K — N as an inclusion, so that K C N.

The R-module N is the union of its finite R-submodules that contain K. Hence,
N ®pr M is the colimit of R-modules of the form N; ® g M where N; runs over all
finite R-submodules of N that contain K (again since tensor product commutes
with colimits). Notice that this is a colimit over a directed system (since the sum
of two finite submodules of N is again finite). Hence, (by Lemma the element
x € K ®r M maps to zero in at least one of these R-modules N; ® g M (since x
maps to zero in N ® g M). Thus we may assume N is a finite R-module.

Assume N is a finite R-module. Write N = R®"/L and K = L'/L for some
L c I’ ¢ R®". For any R-submodule G C R®", we have a canonical map G ®g
M — M®" obtained by composing G ®g M — R™ @r M = M®". It suffices to
prove that L @ g M — M®" and L' g M — M®" are injective. Namely, if so,
then we see that K @ M = L' g M/L @r M — M®" /L. ®p M is injective to<ﬂ

Thus it suffices to show that L g M — M®" is injective when L C R®" is an
R-submodule. We do this by induction on n. The base case n = 1 we handle below.
For the induction step assume n > 1 and set L' = LNR@®09"~!. Then L” = L/L’
is a submodule of R®"~!. We obtain a diagram

LI®RM4>L®RM4>LH®RM4>O

l i |

0 M MO — > MOl 5

By induction hypothesis and the base case the left and right vertical arrows are
injective. The rows are exact. It follows that the middle vertical arrow is injective
too.

The base case of the induction above is when L C R is an ideal. In other words,
we have to show that I ® g M — M is injective for any ideal I of R. We know
this is true when I is finitely generated. However, I = |J I, is the union of the
finitely generated ideals I, contained in it. In other words, I = colim I,. Since
® commutes with colimits we see that I ® g M = colim I, ®r M and since all
the morphisms I, ® g M — M are injective by assumption, the same is true for
I®r M — M. |

Lemma 39.6. Let {R;,p:i} be a system of rings over the directed set I. Let
R = COlin’li Rz
(1) If M is an R-module such that M is flat as an R;-module for all i, then M
is flat as an R-module.

4This becomes obvious if we identify L’ ® g M and L ® g M with submodules of M®™ (which
is legitimate since the maps L g M — M®™ and L' g M — M®™ are injective and commute
with the obvious map L' ® g M — L @ M).
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(2) Fori €I let M; be a flat R;-module and for i' > i let fi;r + M; — M, be
a ;i -linear map such that firyn o fir = fir. Then M = colim;er M; is a
flat R-module.

Proof. Part (1) is a special case of part (2) with M; = M for all i and f;;; = idyy.
Proof of (2). Let a C R be a finitely generated ideal. By Lemma it suffices to
show that a ® g M — M is injective. We can find an ¢ € I and a finitely generated
ideal o’ C R; such that a = a’R. Then a = colim;/>; a’R;,. Since ® commutes with
colimits the map a ® g M — M is the colimit of the maps

a Ry R, My — My

These maps are all injective by assumption. Since colimits over I are exact by
Lemma [B.§ we win. O

Lemma 39.7. Suppose that M is (faithfully) flat over R, and that R — R’ is a
ring map. Then M ®g R’ is (faithfully) flat over R'.

Proof. For any R’-module N we have a canonical isomorphism N®@p (R'®@r M) =
N ®gr M. Hence the desired exactness properties of the functor — ®@g (R’ @ M)
follow from the corresponding exactness properties of the functor — ® g M. ([

Lemmal 39.8. Let R — R’ be a faithfully flat Ting map. Let M be a module over
R, and set M' = R' ® g M. Then M is flat over R if and only if M’ is flat over
R

Proof. By Lemma we see that if M is flat then M’ is flat. For the converse,
suppose that M’ is flat. Let Ny — Ny — N3 be an exact sequence of R-modules.
We want to show that Ny @ g M — No ®gr M — N3 ®r M is exact. We know that
Ni1®rR — No®r R — N3®pr R is exact, because R — R’ is flat. Flatness of M’
implies that Ny QrR Qp M' = No@QrR' Qr M' — N3@r R Qpr M' is exact. We
may write this as N @ g M @ g R’ — No Qg M ®r R’ — N3 ®r M ®pr R’. Finally,
faithful flatness implies that Ny @ g M — Ny @ g M — N3 @z M is exact. ([l

Lemma 39.9. Let R be a ring. Let S — S’ be a flat map of R-algebras. Let M
be a module over S, and set M' = S" @5 M.

(1) If M is flat over R, then M’ is flat over R.
(2) If S — S is faithfully flat, then M is flat over R if and only if M’ is flat
over R.

Proof. Let N — N’ be an injection of R-modules. By the flatness of S — S’ we
have

Ker(N®@r M — N' @r M) ®5 5" = Ker(N @g M' — N' @ M')

If M is flat over R, then the left hand side is zero and we find that M’ is flat over R
by the second characterization of flatness in Lemma If M’ is flat over R then
we have the vanishing of the right hand side and if in addition S — S’ is faithfully
flat, this implies that Ker(N ®g M — N’ ®g M) is zero which in turn shows that
M is flat over R. (]

Lemmal 39.10. Let R — S be a ring map. Let M be an S-module. If M is flat
as an R-module and faithfully flat as an S-module, then R — S is flat.
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Proof. Let Ny — Ny — N3 be an exact sequence of R-modules. By assumption
N1 ®r M — Ny ®r M — N3 ®r M is exact. We may write this as

Ni®@rS®sM — Ny ®r S ®s M — N3 ®g S ®s M.

By faithful flatness of M over S we conclude that Ny ®g S — No®r S — N3®g S
is exact. Hence R — S is flat. O

Let R be a ring. Let M be an R-module. Let Y f;z; = 0 be a relation in M. We
say the relation ) fiz; is trivial if there exist an integer m > 0, elements y; € M,
j=1,...,m,and elements a;; € R, 1 =1,...,n, j =1,...,m such that

T, = Zj a;;y;,vi, and 0= Zi fiaij, V.

Lemma 39.11 (Equational criterion of flatness). A module M over R is flat if
and only if every relation in M is trivial.

Proof. Assume M is flat and let > fixz; = 0 be a relation in M. Let I =
(fi,--., fn), and let K = Ker(R" — I, (a1,...,an) — Y ,a;f;). So we have the
short exact sequence 0 — K — R™ — I — 0. Then > f; ® x; is an element of
I ® g M which maps to zero in R ®r M = M. By flatness > f; ® z; is zero in
IT®gr M. Thus there exists an element of K ® g M mapping to > e;®x; € R"®@r M
where e; is the ith basis element of R™. Write this element as Y k; ® y; and then
write the image of k; in R™ as > a;;e; to get the result.

Assume every relation is trivial, let I be a finitely generated ideal, and let =z =
> fi ® z; be an element of I ® g M mapping to zero in R @g M = M. This just
means exactly that Y fix; is a relation in M. And the fact that it is trivial implies
easily that x is zero, because

$=Zfi®xi:Zfi® (Zaijyj) :Z(Zfiaij) ®y; =0

O

Lemma 39.12. Suppose that R is a ring, 0 — M" — M’ — M — 0 a short exact
sequence, and N an R-module. If M is flat then N@gr M" — N ®g M’ is injective,
i.e., the sequence

0N®rM" > NrM — N®gpM—0
is a short exact sequence.

Proof. Let RY) — N be a surjection from a free module onto N with kernel K.
The result follows from the snake lemma applied to the following diagram

0 0 0

T T )
M'@r N — M ®rN — MrN — 0

T T D)
0o - WD - WMHYD - MDD 0

T T )
MH®RK — M/®RK — M®RK — 0

T

0

with exact rows and columns. The middle row is exact because tensoring with the
free module R) is exact. ]
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Lemmal 39.13. Suppose that 0 - M' — M — M" — 0 is a short exact sequence
of R-modules. If M' and M" are flat so is M. If M and M" are flat so is M’.

Proof. We will use the criterion that a module NV is flat if for every ideal I C R the
map N @ I — N is injective, see Lemma[39.5] Consider an ideal I C R. Consider
the diagram

0o — M’ — M — M — 0

T T T
M ®rl — M@rl — M'@rl — 0

with exact rows. This immediately proves the first assertion. The second follows
because if M” is flat then the lower left horizontal arrow is injective by Lemma

39.12) (]

Lemmal 39.14. Let R be a ring. Let M be an R-module. The following are
equivalent
(1) M is faithfully flat, and
(2) M is flat and for all R-module homomorphisms o : N — N’ we have a =0
if and only if a ® idyy = 0.

Proof. If M is faithfully flat, then 0 — Ker(a) - N — N’ is exact if and only
if the same holds after tensoring with M. This proves (1) implies (2). For the
other, assume (2). Let N3 — Na — N3 be a complex, and assume the complex
Ni1®rM — Na®@r M — N3®pr M is exact. Take x € Ker(Ny — N3), and consider
the map o : R — Na/Im(Ny), r — ra + Im(N7). By the exactness of the complex
— ®pr M we see that a ® id,s is zero. By assumption we get that « is zero. Hence
x is in the image of N1 — Ns. O

Lemma 39.15. Let M be a flat R-module. The following are equivalent:
(1) M is faithfully flat,
(2) for every nonzero R-module N, then tensor product M @ g N is nonzero,
(3) for all p € Spec(R) the tensor product M Qg k(p) is nonzero, and
(4) for all maximal ideals m of R the tensor product M @p k(m) = M/mM is
nonzero.

Proof. Assume M faithfully flat and N # 0. By Lemma the nonzero map
1: N — N induces a nonzero map M @ g N - M ®g N, so M ®g N # 0. Thus
(1) implies (2). The implications (2) = (3) = (4) are immediate.

Assume (4). Suppose that N; — No — N3 is a complex and suppose that N1 ®p
M — No ®r M — N3 ®r M is exact. Let H be the cohomology of the complex,
so H = Ker(Ny — N3)/Im(N; — Ns). To finish the proof we will show H = 0.
By flatness we see that H @ g M = 0. Take x € H and let I = {f € R | fz = 0}
be its annihilator. Since R/I C H we get M/IM C H @ M = 0 by flatness of
M. If I # R we may choose a maximal ideal I C m C R. This immediately gives
a contradiction. (]

Lemma 39.16. Let R — S be a flat ring map. The following are equivalent:
(1) R— S is faithfully flat,
(2) the induced map on Spec is surjective, and
(3) any closed point © € Spec(R) is in the image of the map Spec(S) —
Spec(R).
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Proof. This follows quickly from Lemma [39.15] because we saw in Remark
that p is in the image if and only if the ring S ® g k(p) is nonzero. O

Lemma 39.17. A flat local ring homomorphism of local rings is faithfully flat.
Proof. Immediate from Lemma B9.16] O
Flatness meshes well with localization.

Lemma 39.18. Let R be a ring. Let S C R be a multiplicative subset.

(1) The localization SR is a flat R-algebra.

(2) If M is an S~'R-module, then M is a flat R-module if and only if M is a
flat S~ R-module.

(3) Suppose M is an R-module. Then M is a flat R-module if and only if M,
is a flat Ry-module for all primes p of R.

(4) Suppose M is an R-module. Then M is a flat R-module if and only if My,
s a flat Ry -module for all mazimal ideals m of R.

(5) Suppose R — A is a ring map, M is an A-module, and g1,...,9m € A are
elements generating the unit ideal of A. Then M is flat over R if and only
if each localization M,, is flat over R.

(6) Suppose R — A is a ring map, and M is an A-module. Then M is a flat
R-module if and only if the localization My is a flat Ry-module (with p the
prime of R lying under q) for all primes q of A.

(7) Suppose R — A is a ring map, and M is an A-module. Then M is a
flat R-module if and only if the localization My is a flat Ry-module (with
p = RNm) for all mazimal ideals m of A.

Proof. Let us prove the last statement of the lemma. In the proof we will use
repeatedly that localization is exact and commutes with tensor product, see Sections
and

Suppose R — A is a ring map, and M is an A-module. Assume that M, is a flat
R,-module for all maximal ideals m of A (with p = RNm). Let I C R be an ideal.
We have to show the map I ® g M — M is injective. We can think of this as a
map of A-modules. By assumption the localization (I ® g M)y — My, is injective
because (I ®g M)n = I, ®r, My. Hence the kernel of ] ® g M — M is zero by
Lemma 3.1l Hence M is flat over R.

Conversely, assume M is flat over R. Pick a prime q of A lying over the prime p
of R. Suppose that I C R, is an ideal. We have to show that [ ®r, Mq — M, is
injective. We can write I = J, for some ideal J C R. Then the map I®g, My — M,
is just the localization (at q) of the map J ® g M — M which is injective. Since
localization is exact we see that M, is a flat Ry-module.

This proves (7) and (6). The other statements follow in a straightforward way from
the last statement (proofs omitted). O

Lemmal 39.19. Let R — S be flat. Let p C p’ be primes of R. Let ¢ C S be a
prime of S mapping to p’. Then there exists a prime q C q' mapping to p.

Proof. By Lemma the local ring map R, — Sy is flat. By Lemma
this local ring map is faithfully flat. By Lemma [39.10] there is a prime mapping to

pR,,. The inverse image of this prime in S does the job. O
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The property of R — S described in the lemma is called the “going down property”.
See Definition 4111

Lemma 39.20. Let R be a ring. Let {S;, i} be a directed system of faithfully
flat R-algebras. Then S = colim; S; is a faithfully flat R-algebra.

Proof. By Lemma we see that S is flat. Let m C R be a maximal ideal.
By Lemma none of the rings S;/mS; is zero. Hence S/mS = colim S;/mS;
is nonzero as well because 1 is not equal to zero. Thus the image of Spec(S) —
Spec(R) contains m and we see that R — S is faithfully flat by Lemma O

40. Supports and annihilators

Some very basic definitions and lemmas.

Definition 40.1. Let R be a ring and let M be an R-module. The support of M
is the set
Supp(M) = {p € Spec(R) | M, # 0}
Lemmal 40.2. Let R be a ring. Let M be an R-module. Then
M = (0) & Supp(M) = 0.

Proof. Actually, Lemma even shows that Supp(M) always contains a maximal
ideal if M is not zero. ]

Definition 40.3. Let R be a ring. Let M be an R-module.
(1) Given an element m € M the annihilator of m is the ideal
Anng(m) = Ann(m) ={f € R| fm = 0}.
(2) The annihilator of M is the ideal
Ammp(M)=Am(M)={f€eR| fm=0Vme M}.

Lemma 40.4. Let R — S be a flat ring map. Let M be an R-module and
m € M. Then Anng(m)S = Anng(m ® 1). If M is a finite R-module, then
Anng(M)S = Anng(M ®r S).

Proof. Set I = Anng(m). By definition there is an exact sequence 0 — I —
R — M where the map R — M sends f to fm. Using flatness we obtain an
exact sequence 0 - I g S — S — M ®pg S which proves the first assertion. If

mi,..., My is a set of generators of M then Anng(M) = (| Anng(m,). Similarly
Anng(M ®gr S) = (NAnng(m; ® 1). Set I; = Anng(m;). Then it suffices to show
that (;,_y ., (LiS) = (MNizy,..., Li)S- This is Lemmaw 0

Lemma 40.5. Let R be a ring and let M be an R-module. If M 1is finite, then
Supp(M) is closed. More precisely, if I = Ann(M) is the annihilator of M, then
V(I) = Supp(M).

Proof. We will show that V(I) = Supp(M).

Suppose p € Supp(M). Then M, # 0. Choose an element m € M whose image in
M, is nonzero. Then the annihilator of m is contained in p by construction of the
localization M,. Hence a fortiori I = Ann(M) must be contained in p.

Conversely, suppose that p & Supp(M). Then M, = 0. Let z1,...,2. € M be

generators. By Lemma there exists an f € R, f & p such that x;/1 =0 in Mjy.
Hence f™x; = 0 for some n; > 1. Hence f"M = 0 for n = max{n;} as desired. O
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0BUR |Lemma 40.6. Let R — R’ be a ring map and let M be a finite R-module. Then

0725

051B

00L3

Supp(M ®p R') is the inverse image of Supp(M).
Proof. Let p € Supp(M). By Nakayama’s lemma (Lemma [20.1]) we see that
M @g k(p) = M, /pM,

is a nonzero x(p) vector space. Hence for every prime p’ C R’ lying over p we see
that

(M ®p R)p /0 (M @r R)y = (M ®r R) @p £(p') = M g £(p) @n(p) (1)

is nonzero. This implies p’ € Supp(M ®r R'). For the converse, if p’ C R’ is a
prime lying over an arbitrary prime p C R, then

(M @p R)y = My ®r, R

Hence if p’ € Supp(M ®g R’) lies over the prime p C R, then p € Supp(M). O

Lemma 40.7. Let R be a ring, let M be an R-module, and let m € M. Then
p € V(Ann(m)) if and only if m does not map to zero in M,.

Proof. We may replace M by Rm C M. Then (1) Ann(m) = Ann(M) and (2) m
does not map to zero in M, if and only if p € Supp(M). The result now follows
from Lemma [40.5] ([

Lemma 40.8. Let R be a ring and let M be an R-module. If M is a finitely
presented R-module, then Supp(M) is a closed subset of Spec(R) whose complement
18 quasi-compact.

Proof. Choose a presentation
R®™ — R¥ M — 0

Let A € Mat(n x m, R) be the matrix of the first map. By Nakayama’s Lemma
20.1] we see that

M, #0< M ® k(p) # 0 < rank(A mod p) < n.

Hence, if I is the ideal of R generated by the n x n minors of A, then Supp(M) =
V(I). Since I is finitely generated, say I = (f1,..., ft), we see that Spec(R) \ V(1)
is a finite union of the standard opens D(f;), hence quasi-compact. |

Lemma 40.9. Let R be a ring and let M be an R-module.

(1) If M is finite then the support of M/IM is Supp(M) NV (I).

(2) If N C M, then Supp(N) C Supp(M).

(3) If Q is a quotient module of M then Supp(Q) C Supp(M).

(4) If 0 = N - M — Q — 0 is a short exact sequence then Supp(M) =
Supp(Q) U Supp(N).

Proof. The functors M — M, are exact. This immediately implies all but the first
assertion. For the first assertion we need to show that M, # 0 and I C p implies
(M/IM), = M,/IM, # 0. This follows from Nakayama’s Lemma [20.1] O
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41. Going up and going down

Suppose p, p’ are primes of the ring R. Let X = Spec(R) with the Zariski topology.
Denote z € X the point corresponding to p and 2’ € X the point corresponding to
p’. Then we have:

¥ ~zep Cp.
In words: z is a specialization of x’ if and only if p’ C p. See Topology, Section
for terminology and notation.

Definition 41.1. Let ¢ : R — S be a ring map.
(1) We say a ¢ : R — S satisfies going up if given primes p C p’ in R and a
prime q in S lying over p there exists a prime q’ of S such that (a) q C ¢,
and (b) q’ lies over p’.
(2) We say a ¢ : R — S satisfies going down if given primes p C p’ in R and a
prime ¢’ in S lying over p’ there exists a prime g of S such that (a) q C ¢’,
and (b) q lies over p.

So far we have see the following cases of this:

)
) As a special case finite ring maps satisfy going up.

) As a special case quotient maps R — R/I satisfy going up.
) A flat ring map satisfies going down, see Lemma

) As a special case any localization satisfies going down.

)

satisfies going down, see Proposition [38.7]

Here is another case where going down holds.

Lemma 41.2. Let R — S be a ring map. If the induced map ¢ : Spec(S) —
Spec(R) is open, then R — S satisfies going down.

Proof. Suppose that p C p’ C R and q' C S lies over p’. As ¢ is open, for every
g €S, g ¢ q we see that p is in the image of D(g) C Spec(S). In other words
Sy @r K(p) is not zero. Since Sy is the directed colimit of these S, this implies
that Sy ®g k(p) is not zero, see Lemmas and Hence p is in the image of
Spec(Sq/) — Spec(R) as desired. O

Lemma 41.3. Let R — S be a ring map.

(1) R — S satisfies going down if and only if generalizations lift along the map
Spec(S) — Spec(R), see Topology, Definition [19.4)

(2) R — S satisfies going up if and only if specializations lift along the map
Spec(S) — Spec(R), see Topology, Definition[19.4)

Proof. Omitted. O

Lemma 41.4. Suppose R — S and S — T are ring maps satisfying going down.
Then so does R — T'. Similarly for going up.

Proof. According to Lemma this follows from Topology, Lemma [19.5 (I

Lemma 41.5. Let R — S be a ring map. Let T C Spec(R) be the image of
Spec(S). If T is stable under specialization, then T is closed.
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Proof. We give two proofs.

First proof. Let p C R be a prime ideal such that the corresponding point of
Spec(R) is in the closure of T. This means that for every f € R, f & p we have
D(f)NT # (. Note that D(f) NT is the image of Spec(S) in Spec(R). Hence we
conclude that Sy # 0. In other words, 1 # 0 in the ring Sy. Since S, is the directed
colimit of the rings Sy we conclude that 1 # 0 in S,. In other words, S, # 0 and
considering the image of Spec(S,) — Spec(S) — Spec(R) we see there exists a
p’ € T with p’ C p. As we assumed T closed under specialization we conclude p is
a point of T" as desired.

Second proof. Let I = Ker(R — S). We may replace R by R/I. In this case the
ring map R — S is injective. By Lemma [30.5] all the minimal primes of R are
contained in the image T'. Hence if T is stable under specialization then it contains
all primes. (Il

Lemma 41.6. Let R — S be a ring map. The following are equivalent:
(1) Going up holds for R — S, and
(2) the map Spec(S) — Spec(R) is closed.

Proof. It is a general fact that specializations lift along a closed map of topological
spaces, see Topology, Lemma Hence the second condition implies the first.

Assume that going up holds for R — S. Let V(I) C Spec(S) be a closed set.
We want to show that the image of V(I) in Spec(R) is closed. The ring map
S — S/I obviously satisfies going up. Hence R — S — S/I satisfies going up, by
Lemma m Replacing S by S/I it suffices to show the image T of Spec(S) in
Spec(R) is closed. By Topology, Lemmas and this image is stable under
specialization. Thus the result follows from Lemma O

Lemma 41.7. Let R be a ring. Let E C Spec(R) be a constructible subset.

(1) If E is stable under specialization, then E is closed.
(2) If E is stable under generalization, then E is open.

Proof. First proof. The first assertion follows from Lemma combined with
Lemma The second follows because the complement of a constructible set is
constructible (see Topology, Lemma, the first part of the lemma and Topology,
Lemma, [19.21

Second proof. Since Spec(R) is a spectral space by Lemma this is a special
case of Topology, Lemma [23.6 |

Proposition|41.8. Let R — S be flat and of finite presentation. Then Spec(S) —
Spec(R) is open. More generally this holds for any ring map R — S of finite
presentation which satisfies going down.

Proof. If R — S is flat, then R — S satisfies going down by Lemma Thus
to prove the lemma we may assume that R — S has finite presentation and satisfies
going down.

Since the standard opens D(g) C Spec(S), g € S form a basis for the topology, it
suffices to prove that the image of D(g) is open. Recall that Spec(S;) — Spec(S)
is a homeomorphism of Spec(S,) onto D(g) (Lemma . Since S — S, satisfies
going down (see above), we see that R — S, satisfies going down by Lemma m
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Thus after replacing S by S; we see it suffices to prove the image is open. By
Chevalley’s theorem (Theorem [29.10) the image is a constructible set F. And F
is stable under generalization because R — S satisfies going down, see Topology,

Lemmas and Hence E is open by Lemma O

Lemma 41.9. Let k be a field, and let R, S be k-algebras. Let S’ C S be a sub
k-algebra, and let f € S’ @k R. In the commutative diagram

Spec((S ®r R)f Spec((S" @k R)¢)

\/

Spec(R

the images of the diagonal arrows are the same.

Proof. Let p C R be in the image of the south-west arrow. This means (Lemma
117.9) that
(8" ®k R); @R k(p) = (5" @ £(p))s

is not the zero ring, i.e., S’ ®x k(p) is not the zero ring and the image of f in it
is not nilpotent. The ring map S’ ®; k(p) — S ® k(p) is injective. Hence also
S ®p k(p) is not the zero ring and the image of f in it is not nilpotent. Hence
(S @k R)§ ®g k(p) is not the zero ring. Thus (Lemma [17.9) we sce that p is in the
image of the south-east arrow as desired. O

Lemma 41.10. Let k be a field. Let R and S be k-algebras. The map Spec(S ®j
R) — Spec(R) is open.

Proof. Let f € S ®; R. It suffices to prove that the image of the standard open
D(f) is open. Let S’ C S be a finite type k-subalgebra such that f € S’ ®; R.
The map R — S’ ®, R is flat and of finite presentation, hence the image U of
Spec((S" ®x R)f) — Spec(R) is open by Proposition By Lemma this is
also the image of D(f) and we win. O

Here is a tricky lemma that is sometimes useful.

Lemmal 41.11. Let R — S be a ring map. Let p C R be a prime. Assume that
(1) there exists a unique prime q C S lying over p, and
(2) either
(a) going up holds for R — S, or
(b) going down holds for R — S and there is at most one prime of S above
every prime of R.

Then Sp = Sy.

Proof. Consider any prime q' C S which corresponds to a point of Spec(Sy). This
means that p’ = RN q’ is contained in p. Here is a picture

q
p/

? S
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Assume (1) and (2)(a). By going up there exists a prime q” C S with ¢’ C q” and
q” lying over p. By the uniqueness of q we conclude that ¢ = q. In other words ¢’
defines a point of Spec(Sy).
Assume (1) and (2)(b). By going down there exists a prime q” C q lying over p’.
By the uniqueness of primes lying over p’ we see that ¢’ = q”. In other words ¢’
defines a point of Spec(Sy).

In both cases we conclude that the map Spec(Sy) — Spec(Sy) is bijective. Clearly
this means all the elements of S — q are all invertible in Sy, in other words S, =
Sq.- O

The following lemma is a generalization of going down for flat ring maps.

Lemma 41.12. Let R — S be a ring map. Let N be a finite S-module flat over
R. Endow Supp(N) C Spec(S) with the induced topology. Then generalizations lift
along Supp(N) — Spec(R).

Proof. The meaning of the statement is as follows. Let p C p’ C R be primes. Let
q’ C S be a prime ¢’ € Supp(N) Then there exists a prime q C ¢', q € Supp(V)
lying over p. As N is flat over R we see that N is flat over R/, see Lemma
As Ny is finite over Sy and not zero since q' € Supp(XN) we see that Ny ®s,, #(q')
is nonzero by Nakayama’s Lemma lm Thus Ny ®r,, £(p") is also not zero. We
conclude from Lemmaw that Ny ®r,, k(p) is nonzero. Let J C Sy ®R,, K(p)
be the annihilator of the finite nonzero module Ny QR,, k(p). Since J is a proper
ideal we can choose a prime q C S which corresponds to a prime of Sq/ R, k(p)/J.
This prime is in the support of N, lies over p, and is contained in q’ as desired. O

42. Separable extensions

In this section we talk about separability for nonalgebraic field extensions. This
is closely related to the concept of geometrically reduced algebras, see Definition

E3.T1

Definition 42.1. Let K/k be a field extension.

(1) We say K is separably generated over k if there exists a transcendence basis
{z;;1 € I} of K/k such that the extension K/k(x;;i € I) is a separable
algebraic extension.

(2) We say K is separable over k if for every subextension k¥ C K’ C K with
K’ finitely generated over k, the extension K'/k is separably generated.

With this awkward definition it is not clear that a separably generated field exten-
sion is itself separable. It will turn out that this is the case, see Lemma

Lemma 42.2. Let K/k be a separable field extension. For any subextension
K/K'/k the field extension K'/k is separable.

Proof. This is direct from the definition. O
Lemma 42.3. Let K/k be a separably generated, and finitely generated field ex-
tension. Set r = trdeg,(K). Then there exist elements x1,...,2,41 of K such
that

(1) z1,...,2, is a transcendence basis of K over k,

(2) K =k(x1,...,241), and
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(3) zyy1 is separable over k(xq,...,x;).

Proof. Combine the definition with Fields, Lemma [19.1 (]

04KM Lemma 42.4. Let K/k be a finitely generated field extension. There exists a
diagram

where k' [k, K'/K are finite purely inseparable field extensions such that K'/k' is
a separably generated field extension.

Proof. This lemma is only interesting when the characteristic of k is p > 0. Choose
x1,...,T, a transcendence basis of K over k. As K is finitely generated over k the
extension k(z1,...,x,) C K is finite. Let K/Kgep/k(21,...,2,) be the subexten-
sion found in Fields, Lemma If K = K, then we are done. We will use
induction on d = [K : Kp).

Assume that d > 1. Choose a 8 € K with o« = P € Kyep and § € Kgep. Let
P=T"+a;T" ' +...4a, be the minimal polynomial of o over k(xy,...,2.). Let
k' /k be a finite purely inseparable extension obtained by adjoining pth roots such
that each a; is a pth power in k"(m%/p, .. ,x},/p). Such an extension exists; details
omitted. Let L be a field fitting into the diagram

K L
k(z1,...,2.) Hk’(mi/p,...,xi/p)
We may and do assume L is the compositum of K and k’(m}/p,...,xi/p). Let
L/Lsep/k’(x}/p, . ,x,ln/p) be the subextension found in Fields, Lemma Then

yp,...,xi/p). The element « € Lgp is a

1/p 1/p
Jh o x)

Lep is the compositum of Kp, and K (x

zero of the polynomial P all of whose coefficients are pth powers in k' (x
and whose roots are pairwise distinct. By Fields, Lemma we see that a = (/)P
for some o’ € Lg.p. Clearly, this means that 5 maps to o’ € Lp. In other words,
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we get the tower of fields
K L

|

Ksep(ﬂ) - LSSP

Ksep > Lsep

!

k(:rl,...,xr)Hk’(mi/pw..,x,lﬂ/p)

|

k K

Thus this construction leads to a new situation with [L : Lgep] < [K : Kgep]. By
induction we can find ¥’ C k" and L C L’ as in the lemma for the extension L/k’.
Then the extensions k” /k and L'/ K work for the extension K/k. This proves the
lemma. O

43. Geometrically reduced algebras

The main result on geometrically reduced algebras is Lemma We suggest the
reader skip to the lemma after reading the definition.

Definition 43.1. Let k be a field. Let S be a k-algebra. We say S is geometrically
reduced over k if for every field extension K/k the K-algebra K ® S is reduced.

Let k be a field and let S be a reduced k-algebra. To check that S is geometrically
reduced it will suffice to check that k®y S is reduced (where k denotes the algebraic
closure of k). In fact it is enough to check this for finite purely inseparable field
extensions k’/k. See Lemma [14.3]

Lemma 43.2. FElementary properties of geometrically reduced algebras. Let k be
a field. Let S be a k-algebra.

(1) If S is geometrically reduced over k so is every k-subalgebra.

(2) If all finitely generated k-subalgebras of S are geometrically reduced, then
S is geometrically reduced.

(3) A directed colimit of geometrically reduced k-algebras is geometrically re-
duced.

(4) If S is geometrically reduced over k, then any localization of S is geometri-
cally reduced over k.

Proof. Omitted. The second and third property follow from the fact that tensor
product commutes with colimits. O

Lemma 43.3. Let k be a field. If R is geometrically reduced over k, and S C R
is a multiplicative subset, then the localization S™'R is geometrically reduced over
k. If R is geometrically reduced over k, then R[x] is geometrically reduced over k.
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Proof. Omitted. Hints: A localization of a reduced ring is reduced, and localiza-
tion commutes with tensor products. ([

In the proofs of the following lemmas we will repeatedly use the following observa-
tion: Suppose that R’ C R and S’ C S are inclusions of k-algebras. Then the map
R ®, 8" — R®; S is injective.

Lemma 43.4. Let k be a field. Let R, S be k-algebras.

(1) If R®y S is nonreduced, then there exist finitely generated subalgebras R’ C
R, S’ C S such that R’ ®; S’ is not reduced.

(2) If R® S contains a nonzero zerodivisor, then there exist finitely gener-
ated subalgebras R' C R, S C S such that R’ ® S’ contains a nonzero
zerodivisor.

(3) If R® S contains a nontrivial idempotent, then there exist finitely gener-
ated subalgebras R’ C R, S’ C S such that R’ ® S’ contains a nontrivial
idempotent.

Proof. Suppose z € R ®j, S is nilpotent. We may write 2 = >, 7 ® y;.
Thus we may take R’ the k-subalgebra generated by the x; and S’ the k-subalgebra
generated by the y;. The second and third statements are proved in the same

way. O

Lemma 43.5. Let k be a field. Let S be a geometrically reduced k-algebra. Let R
be any reduced k-algebra. Then R ®y S is reduced.

Proof. By Lemma we may assume that R is of finite type over k. Then R,
as a reduced Noetherian ring, embeds into a finite product of fields (see Lemmas
[25.4) [31.6] and [25.1). Hence we may assume R is a finite product of fields. In this
case it follows from Definition [43.1] that R ®j, S is reduced. ]

Lemma 43.6. Let k be a field. Let S be a reduced k-algebra. Let K/k be either a
separable field extension, or a separably generated field extension. Then K ®y S is
reduced.

Proof. Assume k C K is separable. By Lemma we may assume that S is of
finite type over k and K is finitely generated over k. Then S embeds into a finite
product of fields, namely its total ring of fractions (see Lemmas and .
Hence we may actually assume that S is a domain. We choose z1,...,2,41 € K
as in Lemma Let P € k(x1,...,2,)[T] be the minimal polynomial of z,41. It
is a separable polynomial. It is easy to see that k[zq,...,2,] ®, S = S[z1,..., 2]
is a domain. This implies k(z1,...,2,) ® S is a domain as it is a localization of
Slx1,...,zr]. The ring extension k(x1,...,z,) ®r S C K ® S is generated by a
single element x,; with a single equation, namely P. Hence K ®j, S embeds into
F[T)/(P) where F is the fraction field of k(z1,...,z,) ®; S. Since P is separable
this is a finite product of fields and we win.

At this point we do not yet know that a separably generated field extension is
separable, so we have to prove the lemma in this case also. To do this suppose
that {x;}icr is a separating transcendence basis for K over k. For any finite set
of elements \; € K there exists a finite subset 7" C I such that k({z;},cr) C
E({zi}ier U {\;}) is finite separable. Hence we see that K is a directed colimit of
finitely generated and separably generated extensions of k. Thus the argument of
the preceding paragraph applies to this case as well. (I
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Lemmal 43.7. Let k be a field and let S be a k-algebra. Assume that S is reduced
and that S, is geometrically reduced for every minimal prime p of S. Then S is
geometrically reduced.

Proof. Since S is reduced the map S — []
If K/k is a field extension, then the maps

Sor K — (J]Sp) @ K = [ S @ K

are injective: the first as k — K is flat and the second by inspection because K is
a free k-module. As S} is geometrically reduced the ring on the right is reduced.
Thus we see that S ®; K is reduced as a subring of a reduced ring. O

p minimal Op 1S injective, see Lemma

Lemma 43.8. Let k'/k be a separable algebraic extension. Then there exists a
multiplicative subset S C k' @ k' such that the multiplication map k' @i k' — k' is
identified with k' @ k' — S™1(K' @4 k).

Proof. First assume k'/k is finite separable. Then k' = k(«), see Fields, Lemma
Let P € k[z] be the minimal polynomial of a over k. Then P is an irreducible,
separable, monic polynomial, see Fields, Section Then k'[x]/(P) — kK @ K/,
Mzt = a;®a is an isomorphism. We can factor P = (z—«)Q in k'[z] and since
P is separable we see that Q(«) # 0. Then it is clear that the multiplicative set S’
generated by Q in k'[x]/(P) works, i.e., that k' = (S’)~(k’[x]/(P)). By transport
of structure the image S of S’ in k' ®; k' works.

In the general case we write k' = [ k; as the union of its finite subfield extensions

over k. For each ¢ there is a multiplicative subset S; C k; ® k; such that k; =
S; (ki @1 ki). Then S =JS; C k' ®; k' works. O

Lemma 43.9. Let k' /k be a separable algebraic field extension. Let A be an algebra
over k'. Then A is geometrically reduced over k if and only if it is geometrically
reduced over k'.

Proof. Assume A is geometrically reduced over k. Let K/k be a field extension.
Then K ®; k" is a reduced ring by Lemma [43.6] Hence by Lemma we find that
K ®r A= (K ® k') @ A is reduced.

Assume A is geometrically reduced over k. Let K/k’' be a field extension. Then
K ®p A= (K Rk A) ®(k’®kk’) K

Since k' ® k' — k' is a localization by Lemma we see that K Q5 A is a
localization of a reduced algebra, hence reduced. [l

44. Separable extensions, continued

In this section we continue the discussion started in Section [I2] Let p be a prime
number and let k be a field of characteristic p. In this case we write k'/? for the
extension of k gotten by adjoining pth roots of all the elements of k to k. (In other
words it is the subfield of an algebraic closure of k& generated by the pth roots of
elements of k.)

Lemma 44.1. Let k be a field of characteristicp > 0. Let K/k be a field extension.
The following are equivalent:

(1) K is separable over k,
(2) the ring K @y k'/P is reduced, and
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(3) K is geometrically reduced over k.

Proof. The implication (1) = (3) follows from Lemma [43.6] The implication (3)
= (2) is immediate.

Assume (2). Let K/L/k be a subextension such that L is a finitely generated
field extension of k. We have to show that we can find a separating transcendence
basis of L. The assumption implies that L ®j k'/? is reduced. Let z1,...,z, be a
transcendence basis of L over k such that the degree of inseparability of the finite
extension k(x1,...,2,) C L is minimal. If L is separable over k(x1,...,z,) then we
win. Assume this is not the case to get a contradiction. Then there exists an element
a € L which is not separable over k(z1,...,z,.). Let P(T) € k(z1,...,z,.)[T] be
the minimal polynomial of « over k(x1,...,x,). After replacing o by fa for some
nonzero f € kl[zy,...,x.] we may and do assume that P lies in k[zq,...,z,,T].
Because « is not separable P is a polynomial in TP, see Fields, Lemma Let
dp be the degree of P as a polynomial in 7T'. Since P is the minimal polynomial of
« the monomials
R e

for e < dp are linearly independent over k in L. We claim that the element dP/dz; €
klz1,..., 2, T] is not zero for at least one i. Namely, if this was not the case, then
P is actually a polynomial in z7,..., 22, T?. In that case we can consider pl/r ¢
EYPlzy,... 2., T). This would map to PP(x,...,2,,«) which is a nilpotent
element of k'/? ®;, L and hence zero. On the other hand, PY/P(zy,...,z,,a) is a
k'/P-linear combination the monomials listed above, hence nonzero in k'/? @, L.
This is a contradiction which proves our claim.

Thus, after renumbering, we may assume that dP/Jz; is not zero. As P is an

irreducible polynomial in T over k(x1,...,z,) it is irreducible as a polynomial in
Z1,...,ZTp, T, hence by Gauss’s lemma it is irreducible as a polynomial in z; over
k(za,...,2.,T). Since the transcendence degree of L is r we see that zo,...,z,, «
are algebraically independent. Hence P(X,xa,..., 2y, @) € k(za,..., 2., @)[X] is
irreducible. Tt follows that x; is separably algebraic over k(zs,...,x,,«). This
means that the degree of inseparability of the finite extension k(xs,..., 2., a) C L
is less than the degree of inseparability of the finite extension k(z1,...,z,) C L,
which is a contradiction. (]

Lemma 44.2. A separably generated field extension is separable.

Proof. Combine Lemma [43.6] with Lemma 4411 O

In the following lemma we will use the notion of the perfect closure which is defined
in Definition
Lemmal44.3. Let k be a field. Let S be a k-algebra. The following are equivalent:
(1) k¥ ® S is reduced for every finite purely inseparable extension k' of k,
(2) kYP @4 S is reduced,
(3) kPerf @y S is reduced, where kP is the perfect closure of k,
(4) k®x S is reduced, where k is the algebraic closure of k, and
(5) S is geometrically reduced over k.

Proof. Note that any finite purely inseparable extension k’/k embeds in kPe"f.
Moreover, k'/? embeds into kP*"f which embeds into k. Thus it is clear that (5) =
(4) = (3) = (2) and that (3) = (1).
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We prove that (1) = (5). Assume k' ®j S is reduced for every finite purely insep-
arable extension k' of k. Let K/k be an extension of fields. We have to show that
K ®j S is reduced. By Lemma we reduce to the case where K/k is a finitely
generated field extension. Choose a diagram

K——K'

]

k——F

as in Lemma By assumption &’ ® S is reduced. By Lemma [43.6] it follows
that K’ ®;, S is reduced. Hence we conclude that K ®;, S is reduced as desired.

Finally we prove that (2) = (5). Assume k'/? ®; S is reduced. Then S is reduced.
Moreover, for each localization S, at a minimal prime p, the ring kP @ Sp is a
localization of k'/? @ S hence is reduced. But Sy is a field by Lemma hence
Sy is geometrically reduced by Lemma [d4.1] It follows from Lemma [43.7) that S is
geometrically reduced. O

45. Perfect fields
Here is the definition.

Definition 45.1. Let k be a field. We say k is perfect if every field extension of
k is separable over k.

Lemmal 45.2. A field k is perfect if and only if it is a field of characteristic O or
a field of characteristic p > 0 such that every element has a pth root.

Proof. The characteristic zero case is clear. Assume the characteristic of k is p > 0.
If k is perfect, then all the field extensions where we adjoin a pth root of an element
of k have to be trivial, hence every element of k has a pth root. Conversely if every
element has a pth root, then k = k/? and every field extension of k is separable by
Lemma [4.11 O

Lemma 45.3. Let K/k be a finitely generated field extension. There exists a
diagram
K——K'

]

k——F
where k' [k, K'/K are finite purely inseparable field extensions such that K'/k' is
a separable field extension. In this situation we can assume that K' = k'K is the
compositum, and also that K' = (k' @ K)red-

Proof. By Lemmal[42.4we can find such a diagram with K’/k’ separably generated.
By Lemma this implies that K’ is separable over k’. The compositum k'K
is a subextension of K'/k’ and hence k' C k'K is separable by Lemma The
ring (k' @, K)yeq is a domain as for some n > 0 the map z — 2" maps it into K.
Hence it is a field by Lemma Thus (k' ®g K)req — K’ maps it isomorphically
onto k' K. O

Lemma 45.4. For every field k there exists a purely inseparable extension k'/k
such that k' is perfect. The field extension k' /k is unique up to unique isomorphism.
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Proof. If the characteristic of k is zero, then &' = k is the unique choice. Assume
the characteristic of k is p > 0. For every n > 0 there exists a unique algebraic
extension k C k'/P" such that (a) every element A € k has a p"th root in k'/?"
and (b) for every element p € k'/P" we have p?" € k. Namely, consider the ring
map k — k'/P" =k, 2 — zP". This is injective and satisfies (a) and (b). It is clear
that k1/P" C k1/P""" as extensions of k via the map y — yP. Then we can take
k' =Jk'?". Some details omitted. O

Definition 45.5. Let k be a field. The field extension k'/k of Lemma is
called the perfect closure of k. Notation kP¢"/ /k.

Note that if ¥'/k is any algebraic purely inseparable extension, then k' is a subex-
tension of kP¢f i.e., kP¢"/ /K’ /k. Namely, (k')P*"/ is isomorphic to kP*"/ by the
uniqueness of Lemma

Lemma 45.6. Let k be a perfect field. Any reduced k algebra is geometrically
reduced over k. Let R, S be k-algebras. Assume both R and S are reduced. Then
the k-algebra R ®y, S is reduced.

Proof. The first statement follows from Lemma [d4.3] For the second statement
use the first statement and Lemma [43.5l O

46. Universal homeomorphisms

Let k&’ /k be an algebraic purely inseparable field extension. Then for any k-algebra
R the ring map R — k¥’ ®; R induces a homeomorphism of spectra. The reason for
this is the slightly more general Lemma below.

Lemmal 46.1. Let o : R — S be a surjective map with locally nilpotent kernel.
Then ¢ induces a homeomorphism of spectra and isomorphisms on residue fields.
For any ring map R — R’ the ring map R’ — R’ ®r S is surjective with locally
nilpotent kernel.

Proof. By Lemma the map Spec(S) — Spec(R) is a homeomorphism onto
the closed subset V(Ker(y)). Of course V(Ker(p)) = Spec(R) because every prime
ideal of R contains every nilpotent element of R. This also implies the statement
on residue fields. By right exactness of tensor product we see that Ker(p)R’ is the
kernel of the surjective map R' — R’ ®g S. Hence the final statement by Lemma
923! [

Lemma 46.2. Let k'/k be a field extension. The following are equivalent

(1) for each x € k' there exists an n > 0 such that ™ € k, and
(2) k' =k or k and k' have characteristic p > 0 and either k'/k is a purely
inseparable extension or k and k' are algebraic extensions of Fp.

Proof. Observe that each of the possibilities listed in (2) satisfies (1). Thus we
assume k’/k satisfies (1) and we prove that we are in one of the cases of (2).
Discarding the case k = k' we may assume k' # k. It is clear that k' /k is algebraic.
Hence we may assume that k'/k is a nontrivial finite extension. Let k'/k{.,/k be
the separable subextension found in Fields, Lemma We have to show that
k = kg, or that k is an algebraic over F),. Thus we may assume that &'/k is a
nontrivial finite separable extension and we have to show k is algebraic over F,,.

[Alpl4l Lemma
3.1.6]
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Pick x € k', z € k. Pick n,m > 0 such that 2™ € k and (z + 1)™ € k. Let k be an
algebraic closure of k. We can choose embeddings o, 7 : k' — k with o(z) # 7(z).
This follows from the discussion in Fields, Section (more precisely, after replacing
k' by the k-extension generated by x it follows from Fields, Lemma [12.8). Then
we see that o(x) = (7(z) for some nth root of unity ¢ in k. Similarly, we see that
o(x+1) = {'r(z + 1) for some mth root of unity ¢’ € k. Since o(z + 1) # 7(z + 1)
we see (' # 1. Then

(@) +1)=dr@@+1)=o(@+1)=o(@) +1=(r(z)+1
implies that
@) =¢)=1-¢
hence ¢’ # ¢ and
T(z) =(1-¢)/( =)
Hence every element of k' which is not in k is algebraic over the prime subfield.

Since k' is generated over the prime subfield by the elements of &’ which are not in
k, we conclude that k' (and hence k) is algebraic over the prime subfield.

Finally, if the characteristic of k is 0, the above leads to a contradiction as follows
(we encourage the reader to find their own proof). For every rational number y we
similarly get a root of unity ¢, such that o(x +y) = (,7(z + y). Then we find

(@) +y = (y(r(x) + )

and by our formula for 7(x) above we conclude ¢, € Q(¢,¢’). Since the number
field Q(¢,¢’) contains only a finite number of roots of unity we find two distinct
rational numbers y, y’ with ¢, = ;. Then we conclude that

y—y =ol@+y) —ol@+y) =@ +y) —Crla+y) =Gy —y)

which implies ¢, = 1 a contradiction. O

Lemma 46.3. Let o : R — S be a ring map. If

(1) for any x € S there exists n > 0 such that x™ is in the image of p, and
(2) Ker(yp) is locally nilpotent,

then ¢ induces a homeomorphism on spectra and induces residue field extensions
satisfying the equivalent conditions of Lemma[{6.29

Proof. Assume (1) and (2). Let ¢,q' be primes of S lying over the same prime
ideal p of R. Suppose x € S with € q, € q'. Then 2™ € q and 2™ & ¢’ for all
n > 0. If 2™ = p(y) with y € R for some n > 0 then

"cq=>ycp=a"ecq

which is a contradiction. Hence there does not exist an x as above and we conclude
that ¢ = ¢’, i.e., the map on spectra is injective. By assumption (2) the kernel
I = Ker(yp) is contained in every prime, hence Spec(R) = Spec(R/I) as topological
spaces. As the induced map R/I — S is integral by assumption (1) Lemma
shows that Spec(S) — Spec(R/I) is surjective. Combining the above we see that
Spec(S) — Spec(R) is bijective. If x € S is arbitrary, and we pick y € R such that
o(y) = ™ for some n > 0, then we see that the open D(x) C Spec(S) corresponds
to the open D(y) C Spec(R) via the bijection above. Hence we see that the map
Spec(S) — Spec(R) is a homeomorphism.
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To see the statement on residue fields, let ¢ C S be a prime lying over a prime
ideal p C R. Let = € k(q). If we think of x(q) as the residue field of the local ring
Sq, then we see that x is the image of some y/z € Sy withy € S, 2 € S, 2 € q.
Choose n,m > 0 such that y™, 2™ are in the image of ¢. Then ™™ is the residue
of (y/2)"™ = (y™)™/(2™)"™ which is in the image of R, — S;. Hence ™™ is in the
image of k(p) — k(q). O

Lemmal 46.4. Let ¢ : R — S be a ring map. Assume

(a) S is generated as an R-algebra by elements x such that 2%, 23 € ¢(R), and
(b) Ker(y) is locally nilpotent,
Then ¢ induces isomorphisms on residue fields and a homeomorphism of spectra.
For any ring map R — R’ the ring map R' — R' ®r S also satisfies (a) and (b).

Proof. Assume (a) and (b). The map on spectra is closed as S is integral over R,
see Lemmas and The image is dense by Lemma m Thus Spec(S) —
Spec(R) is surjective. If q C S is a prime lying over p C R then the field extension
k(q)/k(p) is generated by elements o € k(q) whose square and cube are in k(p).
Thus clearly @ € k(p) and we find that k(q) = x(p). If q,q" were two distinct
primes lying over p, then at least one of the generators x of S as in (a) would have
distinct images in x(q) = k(p) and x(q’) = k(p). This would contradict the fact
that both 2 and 2% do have the same image. This proves that Spec(S) — Spec(R)
is injective hence a homeomorphism (by what was already shown).

Since ¢ induces a homeomorphism on spectra, it is in particular surjective on
spectra which is a property preserved under any base change, see Lemma [30.3
Therefore for any R — R’ the kernel of the ring map R’ — R’ ®gr S consists of
nilpotent elements, see Lemma [30.6] in other words (b) holds for R — R' ®@g S. It
is clear that (a) is preserved under base change. O

Lemma 46.5. Let p be a prime number. Let n,m > 0 be two integers. There
exists an integer a such that (xz +y)P", p*(z +y) € Z[zP", p"x,y?" , p™y).

Proof. This is clear for p®(x + y) as soon as a > n,m. In fact, pick a > n,m.

Write
§ pa . .
Pt _ Y’
(z+y) Zi,jgo,iﬂ':p“ <i7j>x /

For every i,7 > 0 with i+ j = p® write ¢ = ¢p"™ +r with r € {0,...7p”—1} andj =
q'p™ +r' with v’ € {0,...,p™ —1}. The condition (z+y)P" € Z[zP", p "z, y?" , p™y]

holds if
’ pa
P T divides < )
2%

If r = v/ = 0 then the divisibility holds. If r # 0, then we write

pa :‘ﬁ pll_l
i3) " i \i-1,j

Since r # 0 the rational number p® /i has p-adic valuation at least a—(n—1) (because
i is not divisible by p™). Thus (f j) is divisible by p®~"*! in this case. Similarly, we
see that if 7/ # 0, then (f?) is divisible by p®~™*!. Picking a = np"” +mp™ +n+m
will work. O
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Lemma 46.6. Let k'/k be a field extension. Let p be a prime number. The
following are equivalent

(1) k' is generated as a field extension of k by elements x such that there exists
ann > 0 with 2" € k and p"z € k, and
(2) k=K or the characteristic of k and k' is p and k' /k is purely inseparable.

Proof. Let x € k’. If there exists an n > 0 with 22" € k and p"z € k and if the
characteristic is not p, then = € k. If the characteristic is p, then we find 2" € k
and hence z is purely inseparable over k. [

Lemmal 46.7. Let ¢ : R — S be a ring map. Let p be a prime number. Assume

(a) S is generated as an R-algebra by elements x such that there exists ann > 0
with zP" € o(R) and p"x € p(R), and
(b) Ker(p) is locally nilpotent,
Then ¢ induces a homeomorphism of spectra and induces residue field extensions
satisfying the equivalent conditions of Lemma . For any ring map R — R’ the
ring map R’ — R' Qg S also satisfies (a) and (b).

Proof. Assume (a) and (b). Note that (b) is equivalent to condition (2) of Lemma
[46.3] Let T' C S be the set of elements = € S such that there exists an integer n > 0
such that zP", p"z € p(R). We claim that T = S. This will prove that condition
(1) of Lemma holds and hence ¢ induces a homeomorphism on spectra. By
assumption (a) it suffices to show that T' C S is an R-sub algebra. If x € T and
y € R, then it is clear that yz € T. Suppose x,y € T and n,m > 0 such that
2" yP" pta,p™y € @(R). Then (zy)P" ", p"tMay € o(R) hence zy € T. We
have z +y € T by Lemma [16.5 and the claim is proved.

Since ¢ induces a homeomorphism on spectra, it is in particular surjective on
spectra which is a property preserved under any base change, see Lemma [30.3]
Therefore for any R — R’ the kernel of the ring map R’ — R’ ®g S consists of
nilpotent elements, see Lemma [30.6] in other words (b) holds for R’ — R’ @g S. It
is clear that (a) is preserved under base change. Finally, the condition on residue
fields follows from (a) as generators for S as an R-algebra map to generators for
the residue field extensions. O

Lemmal 46.8. Let ¢ : R — S be a ring map. Assume

(1) ¢ induces an injective map of spectra,
(2) ¢ induces purely inseparable residue field extensions.

Then for any ring map R — R’ properties (1) and (2) are true for R — R' Qg S.

Proof. Set S’ = R’ ®r S so that we have a commutative diagram of continuous
maps of spectra of rings

Spec(S’) —— Spec(S)
Spec(R') — Spec(R)

Let p’ C R’ be a prime ideal lying over p C R. If there is no prime ideal of S
lying over p, then there is no prime ideal of S’ lying over p’. Otherwise, by Remark
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there is a unique prime ideal v of F' = S ®g «(p) whose residue field is purely
inseparable over k(p). Consider the ring maps

k(p) = F — k(r)

By Lemma the ideal v C F is locally nilpotent, hence we may apply Lemma
to the ring map F — k(r). We may apply Lemma to the ring map

k(p) — k(r). Hence the composition and the second arrow in the maps
R(p) = £0) Q) = K1) i) £(0)
induces bijections on spectra and purely inseparable residue field extensions. This
implies the same thing for the first map. Since
K(p") @n(p) F' = (D) @(p) £(P) ®r S = K(p") @ § = £(0') ®p R' @R S
we conclude by the discussion in Remark O

Lemmal 46.9. Let ¢ : R — S be a ring map. Assume

(1) ¢ is integral,

(2) ¢ induces an injective map of spectra,

(3) ¢ induces purely inseparable residue field extensions.
Then ¢ induces a homeomorphism from Spec(S) onto a closed subset of Spec(R)
and for any ring map R — R’ properties (1), (2), (3) are true for " — R' ®g S.

Proof. The map on spectra is closed by Lemmas and [36.22] The properties
are preserved under base change by Lemmas and [36.13 O

Lemmal 46.10. Let ¢ : R — S be a ring map. Assume
(1) ¢ is integral,
(2) ¢ induces an bijective map of spectra,
(3) ¢ induces purely inseparable residue field extensions.

Then ¢ induces a homeomorphism on spectra and for any ring map R — R’ prop-
erties (1), (2), (3) are true for R' — R' Qg S.

Proof. Follows from Lemmas [£6.9] and [30.3 |

Lemmal 46.11. Let ¢ : R — S be a ring map such that

(1) the kernel of ¢ is locally nilpotent, and
(2) S is generated as an R-algebra by elements x such that there exist n > 0
and a polynomial P(T) € R[T| whose image in S[T] is (T — x)™.
Then Spec(S) — Spec(R) is a homeomorphism and R — S induces purely insepa-
rable extensions of residue fields. Moreover, conditions (1) and (2) remain true on
arbitrary base change.

Proof. We may replace R by R/ Ker(yp), see Lemma Assumption (2) implies
S is generated over R by elements which are integral over R. Hence R C S is
integral (Lemma [36.7]). In particular Spec(S) — Spec(R) is surjective and closed

(Lemmas [36.17} [41.6] and [36.22)).

Let x € S be one of the generators in (2), i.e., there exists an n > 0 be such that
(T'—x)™ € R[T]. Let p C R be a prime. The x(p) ®g S ring is nonzero by the
above and Lemmal[17.9] If the characteristic of x(p) is zero then we see that nz € R
implies 1 ® x is in the image of k(p) — k(p) ®r S. Hence k(p) — x(p) ®r S is an
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isomorphism. If the characteristic of x(p) is p > 0, then write n = p*m with m
prime to p. In k(p) ®r S[T] we have

(T-102)"=(T-1@2) )" = (T —1022 )™

and we see that ma?" € R. This implies that 1 ® zP" is in the image of x(p) —
k(p) ®r S. Hence Lemma applies to k(p) = k(p) ®r S. In both cases we con-
clude that x(p) ® g S has a unique prime ideal with residue field purely inseparable
over s(p). By Remark we conclude that ¢ is bijective on spectra.

The statement on base change is immediate. O

47. Geometrically irreducible algebras

00I2 An algebra S over a field k is geometrically irreducible if the algebra S ®; k' has a
unique minimal prime for every field extension k'/k. In this section we develop a
bit of theory relevant to this notion.

00I6 |Lemma 47.1. Let R — S be a ring map. Assume

(a) Spec(R) is irreducible,

(b) R — S is flat,

(¢) R— S is of finite presentation,

(d) the fibre rings S ®p k(p) have irreducible spectra for a dense collection of
primes p of R.
Then Spec(S) is irreducible. This is true more generally with (b) + (c¢) replaced by
“the map Spec(S) — Spec(R) is open”.

Proof. The assumptions (b) and (¢) imply that the map on spectra is open, see
Proposition Hence the lemma follows from Topology, Lemma [8.14 (Il

00I7 Lemmal 47.2. Let k be a separably closed field. Let R, S be k-algebras. If R, S
have a unique minimal prime, so does R ®y, S.

Proof. Let k& C k be a perfect closure, see Definition m By assumption k is
algebraically closed. The ring maps R — R®; k and S — S @ k and R ®;, S —
(R®yS)@rk = (RO k) @7 (S @4 k) satisfy the assumptions of Lemmam Hence
we may assume k is algebraically closed.

We may replace R and S by their reductions. Hence we may assume that R and S
are domains. By Lemma [45.6] we see that R®y, S is reduced. Hence its spectrum is
reducible if and only if it contains a nonzero zerodivisor. By Lemma [3.4] we reduce
to the case where R and S are domains of finite type over k algebraically closed.

Note that the ring map R — R ®y S is of finite presentation and flat. Moreover,
for every maximal ideal m of R we have (R ®; S) ® g R/m = S because k = R/m
by the Hilbert Nullstellensatz Theorem Moreover, the set of maximal ideals
is dense in the spectrum of R since Spec(R) is Jacobson, see Lemma Hence
we see that Lemma [47.1] applies to the ring map R — R®;, S and we conclude that
the spectrum of R ®y S is irreducible as desired. O

037K Lemma 47.3. Letk be a field. Let R be a k-algebra. The following are equivalent

(1) for every field extension k'/k the spectrum of R ®y k' is irreducible,
(2) for every finite separable field extension k'/k the spectrum of R ®y k' is
irreducible,
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(3) the spectrum of R ®y k is irreducible where k is the separable algebraic
closure of k, and 7 7
(4) the spectrum of R ®x k is irreducible where k is the algebraic closure of k.

Proof. It is clear that (1) implies (2).

Assume (2) and let k is the separable algebraic closure of k. Suppose q; C R ® k,
i = 1,2 are two minimal prime ideals. For every finite subextension k/k’/k the
extension k'/k is separable and the ring map R ®; k' — R ®;, k is flat. Hence
pi = (R ®g k') N q; are minimal prime ideals (as we have going down for flat ring
maps by Lemma [39.19). Thus we see that p; = po by assumption (2). Since
k = JK' we conclude q; = q2. Hence Spec(R ®, k) is irreducible.

Assume (3) and let k be the algebraic closure of k. Let E/El /k be the correspond-
ing separable algebraic closure of k. Then E/El is purely inseparable (in positive

characteristic) or trivial. Hence R ®j, % — R @ k induces a homeomorphism on
spectra, for example by Lemma [46.7 Thus we have (4).

Assume (4). Let k'/k be an arbitrary field extension and let k be the algebraic
closure of k. We may choose a field F such that both &’ and k are isomorphic to
subfields of F'. Then
R, F=(R®i k) ®r F

and hence we see from Lemma [A7.2] that R ®; F has a unique minimal prime.
Finally, the ring map R® k' — R®y F is flat and injective and hence any minimal
prime of R ®y k' is the image of a minimal prime of R ®; F (by Lemma and
going down). We conclude that there is only one such minimal prime and the proof
is complete. ([l

Definition 47.4. Let k be a field. Let S be a k-algebra. We say S is geometri-
cally irreducible over k if for every field extension k//k the spectrum of S ®j k' is
irreducibld’]

By Lemma it suffices to check this for finite separable field extensions k’/k or
for k' equal to the separable algebraic closure of k.

Lemma 47.5. Let k be a field. Let R be a k-algebra. If k is separably algebraically
closed then R is geometrically irreducible over k if and only if the spectrum of R is
irreducible.

Proof. Immediate from the remark following Definition [47.4] (]

Lemmal 47.6. Let k be a field. Let S be a k-algebra.

(1) If S is geometrically irreducible over k so is every k-subalgebra.

(2) If all finitely generated k-subalgebras of S are geometrically irreducible, then
S is geometrically irreducible.

(3) A directed colimit of geometrically irreducible k-algebras is geometrically
irreducible.

Proof. Let S’ C S be a subalgebra. Then for any extension k'/k the ring map
S @y k' — S @y k' is injective also. Hence (1) follows from Lemma [30.5] (and the
fact that the image of an irreducible space under a continuous map is irreducible).

5An irreducible space is nonempty.
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The second and third property follow from the fact that tensor product commutes
with colimits. ([

Lemma 47.7. Let k be a field. Let S be a geometrically irreducible k-algebra. Let
R be any k-algebra. The map

Spec(R ®y S) — Spec(R)
induces a bijection on irreducible components.

Proof. Recall that irreducible components correspond to minimal primes (Lemma
. As R — R®; S is flat we see by going down (Lemma that any minimal
prime of R®y, S lies over a minimal prime of R. Conversely, if p C R is a (minimal)
prime then
R @ S/p(R®y S) = (R/p) @k § C K(p) ®k S

by flatness of R — R ®; S. The ring x(p) ®; S has irreducible spectrum by
assumption. It follows that R ®; S/p(R ®j, S) has a single minimal prime (Lemma
. In other words, the inverse image of the irreducible set V (p) is irreducible.
Hence the lemma follows. O

Let us make some remarks on the notion of geometrically irreducible field exten-
sions.

Lemma 47.8. Let K/k be a field extension. If k is algebraically closed in K, then
K is geometrically irreducible over k.

Proof. Assume k is algebraically closed in K. By Definition and Lemma
47.3| it suffices to show that the spectrum of K ®j, k' is irreducible for every finite
separable extension k’/k. Say k' is generated by a € kK’ over k, see Fields, Lemma
Let P =T+ a;T% ' +...+aq € k[T] be the minimal polynomial of . Then
K @y k' =2 K[T]/(P). The only way the spectrum of K[T]/(P) can be reducible is
if P is reducible in K[T]. Assume P = Py P, is a nontrivial factorization in K[T
to get a contradiction. By Lemma [38.5] we see that the coefficients of P; and P,
are algebraic over k. Our assumption implies the coefficients of P; and P, are in k
which contradicts the fact that P is irreducible over k. O

Lemma 47.9. Let K/k be a geometrically irreducible field extension. Let S be a
geometrically irreducible K-algebra. Then S is geometrically irreducible over k.

Proof. By Definition and Lemma it suffices to show that the spectrum
of S ®y k' is irreducible for every finite separable extension k'/k. Since K is geo-
metrically irreducible over k we see that K’ = K ®;, k' is a finite, separable field
extension of K. Hence the spectrum of S ®; k' = S ® K’ is irreducible as S is
assumed geometrically irreducible over K. O

Lemma 47.10. Let K/k be a field extension. The following are equivalent

(1) K is geometrically irreducible over k, and
(2) the induced extension K(t)/k(t) of purely transcendental extensions is geo-
metrically irreducible.

Proof. Assume (1). Denote Q an algebraic closure of k(¢). By Definition we
find that the spectrum of

K ®, Q=K Qg k(t) Qk(t) Q
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is irreducible. Since K (t) is a localization of K ®j k(T') we conclude that the
spectrum of K (t) ®y )2 is irreducible. Thus by Lemma we find that K (t)/k(t)
is geometrically irreducible.

Assume (2). Let k'/k be a field extension. We have to show that K ® k' has a
unique minimal prime. We know that the spectrum of

K(t) @) K'(t)

is irreducible, i.e., has a unique minimal prime. Since there is an injective map
K @, k' — K(t) @k k'(t) (details omitted) we conclude by Lemmas and
0. 7l

Lemma 47.11. Let K/L/M be a tower of fields with L/M geometrically irre-
ducible. Let x € K be transcendental over L. Then L(x)/M(x) is geometrically
irreducible.

Proof. This follows from Lemma47.10|because the fields L(z) and M (z) are purely
transcendental extensions of L and M. d

Lemma 47.12. Let K/k be a field extension. The following are equivalent

(1) K/k is geometrically irreducible, and
(2) every element a € K separably algebraic over k is in k.

Proof. Assume (1) and let @ € K be separably algebraic over k. Then k' = k(«)
is a finite separable extension of k contained in K. By Lemma the extension
k' /k is geometrically irreducible. In particular, we see that the spectrum of k¥’ @y k
is irreducible (and hence if it is a product of fields, then there is exactly one factor).
By Fields, Lemma it follows that Homyg(k’, k) has one element which in turn
implies that & = k by Fields, Lemma [12.11] Thus (2) holds.

Assume (2). Let k' C K be the subfield consisting of elements algebraic over k. By
Lemma [47.8| the extension K/’ is geometrically irreducible. By assumption &’/k is
a purely inseparable extension. By Lemma the extension k'/k is geometrically
irreducible. Hence by Lemma [47.9 we see that K/k is geometrically irreducible. [

Lemma 47.13. Let K/k be a field extension. Consider the subextension K/k'/k
consisting of elements separably algebraic over k. Then K is geometrically irre-
ducible over k'. If K/k is a finitely generated field extension, then [k’ : k] < co.

Proof. The first statement is immediate from Lemma 7.12] and the fact that ele-
ments separably algebraic over k' are in k' by the transitivity of separable algebraic
extensions, see Fields, Lemma @ If K/k is finitely generated, then k' is finite
over k by Fields, Lemma [26.11] O

Lemma 47.14. Let K/k be an extension of fields. Let k/k be a separable algebraic
closure. Then Gal(k/k) acts transitively on the primes of k @y, K.

Proof. Let K/k'/k be the subextension found in Lemma47.13 Note that as k C k
is integral all the prime ideals of k®j;, K and k®y, k' are maximal, see Lemma [36.20
By Lemma [I7.7) the map

Spec(k @ K) — Spec(k @ k')
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is bijective because (1) all primes are minimal primes, (2) k@ K = (k@ k') 9p K,
and (3) K is geometrically irreducible over k’. Hence it suffices to prove the lemma
for the action of Gal(k/k) on the primes of k ®j, k.

As every prime of k ®;, k' is maximal, the residue fields are isomorphic to k. Hence
the prime ideals of k£ ®j k' correspond one to one to elements of Homy, (', k) with
o € Homy(k', k) corresponding to the kernel p, of 1®0 : k® k' — k. In particular
Gal(k/k) acts transitively on this set as desired. O

48. Geometrically connected algebras

Lemma 48.1. Let k be a separably algebraically closed field. Let R, S be k-
algebras. If Spec(R), and Spec(S) are connected, then so is Spec(R ®y S).

Proof. Recall that Spec(R) is connected if and only if R has no nontrivial idempo-
tents, see Lemma Hence, by Lemma [43.4] we may assume R and S are of finite
type over k. In this case R and S are Noetherian, and have finitely many minimal
primes, see Lemma, Thus we may argue by induction on n +m where n, resp.
m is the number of irreducible components of Spec(R), resp. Spec(S). Of course the
case where either n or m is zero is trivial. If n = m = 1, i.e., Spec(R) and Spec(S)
both have one irreducible component, then the result holds by Lemma Sup-
pose that n > 1. Let p C R be a minimal prime corresponding to the irreducible
closed subset T' C Spec(R). Let T’ C Spec(R) be the union of the other n — 1
irreducible components. Choose an ideal I C R such that 77 = V(I) = Spec(R/I)
(Lemma . By choosing our minimal prime carefully we may in addition ar-
range it so that 7" is connected, see Topology, Lemma Then TUT’ = Spec(R)
and TNT' =V (p+1) =Spec(R/(p+1)) is not empty as Spec(R) is assumed con-
nected. The inverse image of T in Spec(R ®y, S) is Spec(R/p ®y S), and the inverse
of T" in Spec(R ®y, S) is Spec(R/I ®j S). By induction these are both connected.
The inverse image of T'NT" is Spec(R/(p + I) ®x S) which is nonempty. Hence
Spec(R ®y, S) is connected. O

Lemma 48.2. Let k be a field. Let R be a k-algebra. The following are equivalent

(1) for every field extension k' /k the spectrum of R ®y k' is connected, and
(2) for every finite separable field extension k'/k the spectrum of R ®y k' is
connected.

Proof. For any extension of fields k' /k the connectivity of the spectrum of R ®y, k'
is equivalent to R®j, k' having no nontrivial idempotents, see Lemma Assume
(2). Let k C k be a separable algebraic closure of k. Using Lemma see that
(2) is equivalent to R®y, k having no nontrivial idempotents. For any field extension
k' /k, there exists a field extension E//E with &' C & . By Lemma we see that
R®g % has no nontrivial idempotents. If R®y k" has a nontrivial idempotent, then
also R ®g E/, contradiction. (I

Definition 48.3. Let k be a field. Let S be a k-algebra. We say S is geometrically
connected over k if for every field extension &’ /k the spectrum of S®k’ is connected.

By Lemma it suffices to check this for finite separable field extensions k'/k.
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Lemma 48.4. Let k be a field. Let R be a k-algebra. If k is separably algebraically
closed then R is geometrically connected over k if and only if the spectrum of R is
connected.

Proof. Immediate from the remark following Definition (48.3 O

Lemmal 48.5. Let k be a field. Let S be a k-algebra.

(1) If S is geometrically connected over k so is every k-subalgebra.

(2) If all finitely generated k-subalgebras of S are geometrically connected, then
S is geometrically connected.

(3) A directed colimit of geometrically connected k-algebras is geometrically
connected.

Proof. This follows from the characterization of connectedness in terms of the
nonexistence of nontrivial idempotents. The second and third property follow from
the fact that tensor product commutes with colimits. ([l

The following lemma will be superseded by the more general Varieties, Lemma [7.4

Lemma 48.6. Let k be a field. Let S be a geometrically connected k-algebra. Let
R be any k-algebra. The map
R— R® S

induces a bijection on idempotents, and the map
Spec(R ® S) — Spec(R)
induces a bijection on connected components.

Proof. The second assertion follows from the first combined with Lemma[22.2] By
Lemmas and we may assume that R and S are of finite type over k. Then
we see that also R®y, S is of finite type over k. Note that in this case all the rings are
Noetherian and hence their spectra have finitely many connected components (since
they have finitely many irreducible components, see Lemma . In particular,
all connected components in question are open! Hence via Lemma [24.3] we see that
the first statement of the lemma in this case is equivalent to the second. Let’s
prove this. As the algebra S is geometrically connected and nonzero we see that all
fibres of X = Spec(R ®, S) — Spec(R) =Y are connected and nonempty. Also,
as R — R ®; S is flat of finite presentation the map X — Y is open (Proposition
41.8]). Topology, Lemma shows that X — Y induces bijection on connected
components. O

49. Geometrically integral algebras

Here is the definition.

Definition 49.1. Let k be a field. Let S be a k-algebra. We say S is geometrically
integral over k if for every field extension k’/k the ring of S ®j k' is a domain.

Any question about geometrically integral algebras can be translated in a question
about geometrically reduced and irreducible algebras.

Lemma 49.2. Letk be a field. Let S be a k-algebra. In this case S is geometrically
integral over k if and only if S is geometrically irreducible as well as geometrically
reduced over k.
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Proof. Omitted. 0
Lemma 49.3. Let k be a field. Let S be a k-algebra. The following are equivalent

(1) S is geometrically integral over k,
(2) for every finite extension k'/k of fields the ring S ®y, k' is a domain,
(3) S ® k is a domain where k is the algebraic closure of k.

Proof. Follows from Lemmas [49.2] [44.3] and [47.3] O

Lemma 49.4. Let k be a field. Let S be a geometrically integral k-algebra. Let R
be a k-algebra and an integral domain. Then R ®j S is an integral domain.

Proof. By Lemma the ring R ® S is reduced and by Lemma the ring
R®. S is irreducible (the spectrum has just one irreducible component), so R®y S
is an integral domain. O

50. Valuation rings
Here are some definitions.

Definition| 50.1. Valuation rings.

(1) Let K be a field. Let A, B be local rings contained in K. We say that B
dominates Aif AC Band my = ANmpg.

(2) Let A be a ring. We say A is a valuation ring if A is a local domain and if
A is maximal for the relation of domination among local rings contained in
the fraction field of A.

(3) Let A be a valuation ring with fraction field K. If R C K is a subring of
K, then we say A is centered on R if R C A.

With this definition a field is a valuation ring.

Lemma 50.2. Let K be a field. Let A C K be a local subring. Then there exists
a valuation ring with fraction field K dominating A.

Proof. We consider the collection of local subrings of K as a partially ordered
set using the relation of domination. Suppose that {4;};cr is a totally ordered
collection of local subrings of K. Then B = J A; is a local subring which dominates
all of the A;. Hence by Zorn’s Lemma, it suffices to show that if A C K is a local
ring whose fraction field is not K, then there exists a local ring B C K, B # A
dominating A.

Pick t € K which is not in the fraction field of A. If ¢ is transcendental over A,
then A[t] C K and hence A[t] ) C K is a local ring distinct from A dominating
A. Suppose t is algebraic over A. Then for some nonzero a € A the element at is
integral over A. In this case the subring A’ C K generated by A and ta is finite
over A. By Lemma there exists a prime ideal m’ C A’ lying over m. Then
A, dominates A. If A = A/ ,, then ¢ is in the fraction field of A which we assumed

m’»

not to be the case. Thus A # A/, as desired. O
Lemmal 50.3. Let A be a valuation ring. Then A is a normal domain.

Proof. Suppose z is in the field of fractions of A and integral over A. Let A’ denote
the subring of K generated by A and x. Since A C A’ is an integral extension, we
see by Lemma [36.17| that there is a prime ideal m" C A’ lying over m. Then Al ,


https://stacks.math.columbia.edu/tag/0FWF
https://stacks.math.columbia.edu/tag/09P9
https://stacks.math.columbia.edu/tag/00I9
https://stacks.math.columbia.edu/tag/00IA
https://stacks.math.columbia.edu/tag/00IC

00IB

052K

0AS4

052L

0AAV

088Y

COMMUTATIVE ALGEBRA 116

dominates A. Since A is a valuation ring we conclude that A = A}, and therefore
that z € A. O

Lemmal 50.4. Let A be a valuation ring with mazximal ideal m and fraction field
K. Let x € K. Then either x € A or x=' € A or both.

Proof. Assume that x is not in A. Let A’ denote the subring of K generated
by A and x. Since A is a valuation ring we see that there is no prime of A’
lying over m. Since m is maximal we see that V(mA’) = (). Then mA’ = A’ by
Lemma m Hence we can write 1 = Z?:o t;x" with ¢; € m. This implies that
(1 —to)(x= 1) =S t;(x71)?" = 0. In particular we see that z~! is integral over
A, and hence ! € A by Lemma [50.3] O

Lemmal 50.5. Let A C K be a subring of a field K such that for all x € K either
x € Aoraxt €A orboth. Then A is a valuation ring with fraction field K.

Proof. If A is not K, then A is not a field and there is a nonzero maximal ideal m.
If m’ is a second maximal ideal, then choose z,y € A withz e m, y € m, = € w’,
and y € m’ (see Lemma [15.2). Then neither z/y € A nor y/z € A contradicting
the assumption of the lemma. Thus we see that A is a local ring. Suppose that A’
is a local ring contained in K which dominates A. Let x € A’. We have to show
that € A. If not, then 7! € A, and of course 7! € m4. But then 27! € my
which contradicts z € A’. O

Lemma 50.6. Let I be a directed set. Let (A;, pij) be a system of valuation rings
over I. Then A = colim A; is a valuation ring.

Proof. It is clear that A is a domain. Let a,b € A. Lemma tells us we have
to show that either a|b or bla in A. Choose i so large that there exist a;,b; € A;

mapping to a,b. Then Lemma [50.4] applied to a;, b; in A; implies the result for a,b
in A. O

Lemma 50.7. Let L/K be an extension of fields. If B C L is a valuation ring,
then A = K N B is a valuation ring.

Proof. We can replace L by the fraction field F' of B and K by K N F. Then the
lemma follows from a combination of Lemmas [50.4] and B0.5 O

Lemma 50.8. Let L/K be an algebraic extension of fields. If B C L is a valuation
ring with fraction field L and not a field, then A = K N B is a valuation ring and
not a field.

Proof. By Lemma the ring A is a valuation ring. If A is a field, then A = K.
Then A = K C B is an integral extension, hence there are no proper inclusions
among the primes of B (Lemma [36.20). This contradicts the assumption that B is
a local domain and not a field. O

Lemmal 50.9. Let A be a valuation ring. For any prime ideal p C A the quotient
A/p is a valuation ring. The same is true for the localization A, and in fact any
localization of A.

Proof. Use the characterization of valuation rings given in Lemma [50.5 (]
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Lemmal 50.10. Let A’ be a valuation ring with residue field K. Let A be a
valuation ring with fraction field K. Then C = {\A € A’ | Amodmy € A} is a
valuation ring.

Proof. Note that my C C and C/my = A. In particular, the fraction field of
C is equal to the fraction field of A’. We will use the criterion of Lemma to
prove the lemma. Let x be an element of the fraction field of C'. By the lemma we
may assume x € A’. If x € my/, then we see x € C. If not, then x is a unit of A’
and we also have 2~ € A’. Hence either  or 27! maps to an element of A by the
lemma again. [

Lemma 50.11. Let A be a normal domain with fraction field K.

(1) For every x € K, x ¢ A there exists a valuation ring A C 'V C K with
fraction field K such that x € V.
(2) If A is local, we can moreover choose V' which dominates A.

In other words, A is the intersection of all valuation rings in K containing A and
if A is local, then A is the intersection of all valuation rings in K dominating A.

Proof. Suppose z € K, x ¢ A. Consider B = Alz~!]. Then z ¢ B. Namely, if
r=ao+az  +...+agx" % then 2% —agzd— ... —ag =0 and z is integral over
A in contradiction with the fact that A is normal. Thus ! is not a unit in B.
Thus V(z~!) C Spec(B) is not empty (Lemma 7 and we can choose a prime
p C B with 27! € p. Choose a valuation ring V' C K dominating B, (Lemma
50.2). Then z ¢ V as 2! € my.

If A is local, then we claim that 7B +msB # B. Namely, if 1 = (ag + a1z~ +
cootagr Nz 4 af + ...+ aljr~? with a; € A and @} € my, then we'd get

d

(1 —ap)z®™ —(ag +ad})z? — ... —ag=0

Since af, € my we see that 1 — a(, is a unit in A and we conclude that z would be
integral over A, a contradiction as before. Then choose the prime p D 2 ' B+myB
we find V' dominating A. O

An totally ordered abelian group is a pair (T, >) consisting of an abelian group T'
endowed with a total ordering > such that v > o' = v+ 7" > 4/ + 4" for all
77,7 €T

Lemma 50.12. Let A be a valuation ring with field of fractions K. SetT' = K*/A*
(with group law written additively). For v,y € T define v > v if and only if v —+'
is in the image of A — {0} = . Then (T',>) is a totally ordered abelian group.

Proof. Omitted, but follows easily from Lemma Note that in case A = K
we obtain the zero group I' = {0} endowed with its unique total ordering. 0

Definition 50.13. Let A be a valuation ring.

(1) The totally ordered abelian group (T, >) of Lemmais called the value
group of the valuation ring A.

(2) The map v : A — {0} — I' and also v : K* — T is called the valuation
associated to A.

(3) The valuation ring A is called a discrete valuation ring if T = Z.
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Note that if I' 2 Z then there is a unique such isomorphism such that 1 > 0. If the
isomorphism is chosen in this way, then the ordering becomes the usual ordering of
the integers.

Lemma 50.14. Let A be a valuation ring. The valuation v : A — {0} — I's¢ has
the following properties: N

(1) v(a) =0 a € A%,

(2) v(ab) = v(a) + v(b),

(3) v(a+b) > min(v(a),v(b)).
Proof. Omitted. U

Lemma 50.15. Let A be a ring. The following are equivalent

(1) A is a valuation ring,
(2) A is a local domain and every finitely generated ideal of A is principal.

Proof. Assume A is a valuation ring and let fi,..., f, € A. Choose i such that
v(f;) is minimal among v(f;). Then (f;) = (f1,..., fa). Conversely, assume A is a
local domain and every finitely generated ideal of A is principal. Pick f,g € A and
write (f,g) = (h). Then f = ah and g = bh and h = c¢f + dg for some a, b, c,d € A.
Thus ac + bd = 1 and we see that either a or b is a unit, i.e., either g/f or f/g is
an element of A. This shows A is a valuation ring by Lemma [50.5] O

Lemma 50.16. Let (I',>) be a totally ordered abelian group. Let K be a field.
Let v : K* — T be a homomorphism of abelian groups such that v(a + b) >
min(v(a),v(db)) for a,b € K with a,b,a+ b not zero. Then

A={z e K|z=0 orv(z) >0}
is a valuation ring with value group Im(v) C T, with mazimal ideal
m={xeK|z=0 orv(z)>0}
and with group of units
A" ={z € K* | v(z) = 0}.
Proof. Omitted. (]

Let (T, >) be a totally ordered abelian group. An ideal of T is a subset I C I such
that all elements of I are > 0 and v € I, 7/ > ~ implies v’ € I. We say that such
an ideal is prime if y++' € I,v,¥ >0=~y€Tor~ € 1.

Lemmal 50.17. Let A be a valuation ring. Ideals in A correspond 1 —1 with ideals
of I'. This bijection is inclusion preserving, and maps prime ideals to prime ideals.

Proof. Omitted. U

Lemma 50.18. A wvaluation ring is Noetherian if and only if it is a discrete
valuation ring or a field.

Proof. Suppose A is a discrete valuation ring with valuation v : A\ {0} — Z
normalized so that Im(v) = Z>¢. By Lemma the ideals of A are the subsets
I, = {0} Uv™(Z>,). It is clear that any element z € A with v(z) = n generates
I,,. Hence A is a PID so certainly Noetherian.

Suppose A is a Noetherian valuation ring with value group I'. By Lemma [50.17] we
see the ascending chain condition holds for ideals in I'. We may assume A is not a
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field, i.e., there is a v € " with v > 0. Applying the ascending chain condition to
the subsets v+ I'>¢ with v > 0 we see there exists a smallest element vy which is
bigger than 0. Let v € I" be an element v > 0. Consider the sequence of elements
Y, Y — Y0, Y — 2%, etc. By the ascending chain condition these cannot all be > 0.
Let v — nyg be the last one > 0. By minimality of v9 we see that 0 = v — n~p.
Hence T is a cyclic group as desired. O

51. More Noetherian rings

Lemmal 51.1. Let R be a Noetherian ring. Any finite R-module is of finite
presentation. Any submodule of a finite R-module is finite. The ascending chain
condition holds for R-submodules of a finite R-module.

Proof. We first show that any submodule N of a finite R-module M is finite. We
do this by induction on the number of generators of M. If this number is 1, then
N =J/I C M = R/I for some ideals I C J C R. Thus the definition of Noetherian
implies the result. If the number of generators of M is greater than 1, then we can
find a short exact sequence 0 -+ M’ — M — M"” — 0 where M’ and M" have
fewer generators. Note that setting N’ = M’ N N and N = Im(N — M") gives
a similar short exact sequence for N. Hence the result follows from the induction
hypothesis since the number of generators of IV is at most the number of generators
of N’ plus the number of generators of N”.

To show that M is finitely presented just apply the previous result to the kernel of
a presentation R™ — M.

It is well known and easy to prove that the ascending chain condition for R-
submodules of M is equivalent to the condition that every submodule of M is
a finite R-module. We omit the proof. O

Lemma 51.2 (Artin-Rees). Suppose that R is Noetherian, I C R an ideal. Let
N C M be finite R-modules. There exists a constant ¢ > 0 such that "M NN =
I"=¢(I°M N N) for alln > c.

Proof. Consider the ring S = R@ I’ P ... = P,,~o 1" Convention: I° =
R. Multiplication maps I"™ x I"™ into I™*t™ by multiplication in R. Note that if
I = (f1,...,f:) then S is a quotient of the Noetherian ring R[X7,...,X;]. The
map just sends the monomial X' ... X/ to fi*...f*. Thus S is Noetherian.
Similarly, consider the module M @& IM & I’M @ ... = D, o I"M. This is a
finitely generated S-module. Namely, if z1,..., 2, generate M over R, then they
also generate @, -, "M over S. Next, consider the submodule ,,., "M N N.
This is an S-submodule, as is easily verified. By Lemma [51.1]it is finitely generated
as an S-module, say by §; € @, ["M NN, j =1,...,s. We may assume by
decomposing each &; into its homogeneous pieces that each £; € I 4 M NN for some
d;. Set ¢ = max{d;}. Then for all n > ¢ every element in I"M N N is of the
form > h;&; with h; € I""%. The lemma now follows from this and the trivial
observation that I"~% (I% M N N) C I"~¢(I°M N N). O

Lemma 51.3. Suppose that 0 - K — M I N is an exact sequence of finitely
generated modules over a Noetherian ring R. Let I C R be an ideal. Then there
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ezists a ¢ such that
FYI'"N) =K +1"Cf~YI°N) and f(M)NI"N C f(I""°M)
for alln > c.

Proof. Apply Lemma to Im(f) C N and note that f: I""°M — I""°f(M)
is surjective. (I

Lemma 51.4 (Krull’s intersection theorem). Let R be a Noetherian local ring.
Let I C R be a proper ideal. Let M be a finite R-module. Then ﬂnzo I"M = 0.

Proof. Let N = ﬂn>0 I"M. Then N = I"M N N for all n > 0. By the Artin-
Rees Lemma [51.2] we see that N = I"M NN C IN for some suitably large n. By
Nakayama’s Lemma [20.1] we see that N = 0. O

Lemma 51.5. Let R be a Noetherian ring. Let I C R be an ideal. Let M be a
finite R-module. Let N =, I"M.

(1) For every prime p, I C p there exists a f € R, f & p such that Ny = 0.
(2) If I is contained in the Jacobson radical of R, then N = 0.

Proof. Proof of (1). Let z1,...,z, be generators for the module N, see Lemma
For every prime p, I C p we see that the image of NV in the localization M, is
zero, by Lemma Hence we can find g; € R, g; € p such that z; maps to zero
in Ng,. Thus Ny, 4,..g, = 0.

Part (2) follows from (1) and Lemma [23.1] O

Remark 51.6. Lemma in particular implies that (), I™ = (0) when I C R is
a non-unit ideal in a Noetherian local ring R. More generally, let R be a Noetherian
ring and I C R an ideal. Suppose that f € [, ™. Then Lemma says that
for every prime ideal I C p there exists a g € R, g ¢ p such that f maps to zero
in Ry. In algebraic geometry we express this by saying that “f is zero in an open
neighbourhood of the closed set V(I) of Spec(R)”.

Lemma 51.7 (Artin-Tate). Let R be a Noetherian ring. Let S be a finitely
generated R-algebra. If T C S is an R-subalgebra such that S is finitely generated
as a T-module, then T is of finite type over R.

Proof. Choose elements 1, ...,x, € S which generate S as an R-algebra. Choose
Y1y -, Ym in S which generate S as a T-module. Thus there exist a;; € 1" such that
x; =Y ai;y;. There also exist b;;, € T such that y;y; = > bijryx. Let TV C T be
the sub R-algebra generated by a;; and b;;,. This is a finitely generated R-algebra,
hence Noetherian. Consider the algebra

S =T'[V1,..., Yol /(Y =D bieYa).

Note that S’ is finite over T”, namely as a T’-module it is generated by the classes
of 1,Y1,...,Y,,. Consider the T"-algebra homomorphism S’ — S which maps Y;
to y;. Because a;; € T" we see that z; is in the image of this map. Thus S" — S
is surjective. Therefore S is finite over 7" as well. Since T” is Noetherian and we
conclude that T C S is finite over 77 and we win. O
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52. Length

Definition 52.1. Let R be a ring. For any R-module M we define the length of
M over R by the formula

lengthp(M) =sup{n |30=My C M; C...C My, =M, M; # M1}

In other words it is the supremum of the lengths of chains of submodules. There
is an obvious notion of when a chain of submodules is a refinement of another.
This gives a partial ordering on the collection of all chains of submodules, with the
smallest chain having the shape 0 = My C My = M if M is not zero. We note the
obvious fact that if the length of M is finite, then every chain can be refined to
a maximal chain. But it is not as obvious that all maximal chains have the same
length (as we will see later).

Lemma 52.2. Let R be a ring. Let M be an R-module. If lengthyp(M) < oo then
M is a finite R-module.

Proof. Omitted. (]

Lemma 52.3. If0— M’ — M — M"” — 0 is a short exact sequence of modules
over R then the length of M is the sum of the lengths of M’ and M" .

Proof. Given filtrations of M’ and M" of lengths n/,n” it is easy to make a
corresponding filtration of M of length n’ + n”. Thus we see that lengthp M >
lengthp M’ 4 lengthp M"”. Conversely, given a filtration My C My C ... C M,
of M consider the induced filtrations M} = M; " M’ and M = Im(M; — M").
Let n' (resp. n”’) be the number of steps in the filtration {M/} (resp. {M]'}). If
M| = M/, and M’ = M | then M; = M;,. Hence we conclude that n’+n" > n.
Combined with the earlier result we win. O

Lemma 52.4. Let R be a local ring with maximal ideal m. If M is an R-module
and m" M # 0 for alln > 0, then lengthr (M) = co. In other words, if M has finite
length then m"M = 0 for some n.

Proof. Assume m"M # 0 for all n > 0. Choose z € M and fi,..., f, € m such
that fi1fs... fnz # 0. The first n steps in the filtration

OCRfi...fax CRf1...fuc1izC...CRzxCM

are distinct. For example, if Rfiz = Rfi fox , then fix = gf1 fox for some g, hence
(1 —gf2)fiz =0 hence fiz =0 as 1 — gfs is a unit which is a contradiction with
the choice of  and f1,..., f,. Hence the length is infinite. O

Lemma 52.5. Let R — S be a ring map. Let M be an S-module. We always
have lengthp (M) > lengthg(M). If R — S is surjective then equality holds.

Proof. A filtration of M by S-submodules gives rise a filtration of M by R-
submodules. This proves the inequality. And if R — S is surjective, then any R-
submodule of M is automatically an S-submodule. Hence equality in this case. [

Lemma 52.6. Let R be a ring with maximal ideal m. Suppose that M is an
R-module with mM = 0. Then the length of M as an R-module agrees with the
dimension of M as a R/m vector space. The length is finite if and only if M is a
finite R-module.
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Proof. The first part is a special case of Lemma [52.5] Thus the length is finite if
and only if M has a finite basis as a R/m-vector space if and only if M has a finite
set of generators as an R-module. (]

Lemma 52.7. Let R be a ring. Let M be an R-module. Let S C R be a multi-
plicative subset. Then lengthp(M) > lengthg—1 p(S™1M).

Proof. Any submodule N’ C S~'M is of the form S~'N for some R-submodule
N C M, by Lemma[9.15] The lemma follows. O

Lemma 52.8. Let R be a ring with finitely generated mazimal ideal m. (For
example R Noetherian.) Suppose that M is a finite R-module with m"M = 0 for
some n. Then lengthp(M) < oo.

Proof. Consider the filtration 0 = m"M C m" M C ... C mM C M. All of the
subquotients are finitely generated R-modules to which Lemma applies. We
conclude by additivity, see Lemma [52.3 [

Definition 52.9. Let R be a ring. Let M be an R-module. We say M is simple
if M # 0 and every submodule of M is either equal to M or to 0.

Lemma 52.10. Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) M is simple,

(2) lengthr(M) =1, and

(3) M = R/m for some mazimal ideal m C R.

Proof. Let m be a maximal ideal of R. By Lemmathe module R/m has length
1. The equivalence of the first two assertions is tautological. Suppose that M is
simple. Choose x € M, x # 0. As M is simple we have M = R-x. Let I C R be the
annihilator of z, i.e., I ={f € R| fo =0}. The map R/I - M, f mod I — fx is
an isomorphism, hence R/T is a simple R-module. Since R/I # 0 we see I # R. Let
I C m be a maximal ideal containing I. If T # m, then m/I C R/I is a nontrivial
submodule contradicting the simplicity of R/I. Hence we see I = m as desired. O

Lemma 52.11. Let R be a ring. Let M be a finite length R-module. Choose any
mazimal chain of submodules

O=MyCcMyCM,yCc...CM,=M
with M; # M;_1,1=1,...,n. Then
(1) n = lengthp(M),
(2) each M;/M;_ is simple,
(3) each M;/M;_1 is of the form R/m; for some mazimal ideal m;,
(4) given a mazimal ideal m C R we have
{0 | i = m} = lengthy, (M),

Proof. If M;/M,;_; is not simple then we can refine the filtration and the filtration
is not maximal. Thus we see that M;/M;_; is simple. By Lemmathe modules
M;/M;_; have length 1 and are of the form R/m; for some maximal ideals m;. By
additivity of length, Lemma we see n = lengthp(M). Since localization is
exact, we see that

0=(Mp)m C (M1)m C (M2)n C...C (My)m = My
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is a filtration of M, with successive quotients (M;/M;_1)n. Thus the last statement
follows directly from the fact that given maximal ideals m, m’ of R we have

N~ 0 ifm#£m,
(B/m)m = {Rm/mRm ifm=mw’

This we leave to the reader. O

Lemma 52.12. Let A be a local ring with maximal ideal m. Let B be a semi-local
ring with maximal ideals m;, i = 1,...,n. Suppose that A — B is a homomorphism
such that each m; lies over m and such that

[k(m;) : kK(M)] < 0.
Let M be a B-module of finite length. Then
lengtha(M) =" [i(mi) : s(m)]lengthys (M),

in particular length, (M) < oo.

i=1,...,n

Proof. Choose a maximal chain
O=MyCcM,CMyC...CM,,=M

by B-submodules as in Lemma [52.11] Then each quotient M;/M;_4 is isomorphic
to r(m;(;)) for some i(j) € {1,...,n}. Moreover length 4 (x(m;)) = [s(m;) : K(m)]
by Lemma The lemma follows by additivity of lengths (Lemma [52.3)). O

Lemmal 52.13. Let A — B be a flat local homomorphism of local rings. Then for
any A-module M we have

length o (M)lengthg (B/maB) = lengthg (M ® 4 B).

In particular, if lengthg(B/msB) < oo then M has finite length if and only if
M ®4 B has finite length.

Proof. The ring map A — B is faithfully flat by Lemma[39.17] Hence if 0 = My C
M, C ... C M, = M is a chain of length n in M, then the corresponding chain
0=My®sB C Mi®sBC...C M,®4B = M® 4B haslength n also. This proves
length 4, (M) = 0o = lengthy (M ®4 B) = co. Next, assume length , (M) < co. In
this case we see that M has a filtration of length ¢ = length 4, (M) whose quotients
are A/m 4. Arguing as above we see that M ® 4 B has a filtration of length ¢ whose
quotients are isomorphic to B ®4 A/my = B/maB. Thus the lemma follows. O

Lemma 52.14. Let A — B — C be flat local homomorphisms of local rings. Then
lengthg (B/maB)lengthe(C/mpC) = lengtho(C/m4C)
Proof. Follows from Lemma [52.13| applied to the ring map B — C and the B-
module M = B/m4B O
53. Artinian rings

Artinian rings, and especially local Artinian rings, play an important role in alge-
braic geometry, for example in deformation theory.

Definition 53.1. A ring R is Artinian if it satisfies the descending chain condition
for ideals.
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Lemma 53.2. Suppose R is a finite dimensional algebra over a field. Then R is
Artinian.

Proof. The descending chain condition for ideals obviously holds. O

Lemmal 53.3. If R is Artinian then R has only finitely many maximal ideals.

Proof. Suppose that m;, i =1,2,3,... are pairwise distinct maximal ideals. Then
m; DmyNmg Dmy NmyNmg D ... is an infinite descending sequence (because by
the Chinese remainder theorem all the maps R — @], R/m; are surjective). O

Lemma 53.4. Let R be Artinian. The Jacobson radical of R is a nilpotent ideal.

Proof. Let I C R be the Jacobson radical. Note that I D I? D I? D ... is a
descending sequence. Thus I" = ["*! for some n. Set J = {z € R | zI" = 0}.
We have to show J = R. If not, choose an ideal J' # J, J C J’ minimal (possible
by the Artinian property). Then J' = J + Rz for some 2 € R. By NAK, Lemma
20.1, we have IJ' C J. Hence zI™*' C oI -I™ C J-I" = 0. Since I"t! = I we
conclude z € J. Contradiction. (]

Lemmal 53.5. Any ring with finitely many maximal ideals and locally nilpotent
Jacobson radical is the product of its localizations at its maximal ideals. Also, all
primes are maximal.

Proof. Let R be a ring with finitely many maximal ideals my,..., m,. Let I =
(-, m; be the Jacobson radical of R. Assume I is locally nilpotent. Let p be a
prime ideal of R. Since every prime contains every nilpotent element of R we see
pODmiN...Nm,. Since myN...Nm, D my...m, we conclude p D m;...m,. Hence
p D m; for some 7, and so p = m;. By the Chinese remainder theorem (Lemma
15.4) we have R/I = € R/m; which is a product of fields. Hence by Lemma
there are idempotents e;, ¢ = 1,...,n with ¢; mod m; = §;;. Hence R = [] Re;,
and each Re; is a ring with exactly one maximal ideal. O

Lemma 53.6. A ring R is Artinian if and only if it has finite length as a module
over itself. Any such ring R is both Artinian and Noetherian, any prime ideal of R
is a mazimal ideal, and R is equal to the (finite) product of its localizations at its
mazimal ideals.

Proof. If R has finite length over itself then it satisfies both the ascending chain
condition and the descending chain condition for ideals. Hence it is both Noetherian
and Artinian. Any Artinian ring is equal to product of its localizations at maximal
ideals by Lemmas [53.3] [65.4] and [53.5]

Suppose that R is Artinian. We will show R has finite length over itself. It suffices
to exhibit a chain of submodules whose successive quotients have finite length.
By what we said above we may assume that R is local, with maximal ideal m.
By Lemma we have m™ = 0 for some n. Consider the sequence 0 = m"™ C
m" ! C...CmC R By Lemma the length of each subquotient m/ /m/*!
is the dimension of this as a vector space over k(m). This has to be finite since
otherwise we would have an infinite descending chain of sub vector spaces which
would correspond to an infinite descending chain of ideals in R. (]
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54. Homomorphisms essentially of finite type

Some simple remarks on localizations of finite type ring maps.

Definition 54.1. Let R — S be a ring map.

(1) We say that R — S is essentially of finite type if S is the localization of an
R-algebra of finite type.

(2) Wesay that R — S is essentially of finite presentation if S is the localization
of an R-algebra of finite presentation.

Lemma 54.2. The class of ring maps which are essentially of finite type is pre-
served under composition. Similarly for essentially of finite presentation.

Proof. Omitted. O

Lemma 54.3. The class of ring maps which are essentially of finite type is pre-
served by base change. Similarly for essentially of finite presentation.

Proof. Omitted. O

Lemmal 54.4. Let R — S be a ring map. Assume S is an Artinian local ring with
mazimal ideal m. Then
(1) R— S is finite if and only if R — S/m is finite,
(2) R— S is of finite type if and only if R — S/m is of finite type.
(3) R — S is essentially of finite type if and only if the composition R — S/m
1s essentially of finite type.

Proof. If R — S is finite, then R — S/m is finite by Lemma Conversely,
assume R — S/m is finite. As S has finite length over itself (Lemma we can
choose a filtration

oOochLc...cl,=S

by ideals such that I;/I;_1 = S/m as S-modules. Thus S has a filtration by R-
submodules I; such that each successive quotient is a finite R-module. Thus S is a
finite R-module by Lemma [5.3

If R — S is of finite type, then R — S/m is of finite type by Lemma Conversely,
assume that R — S/m is of finite type. Choose f1,...,f, € S which map to
generators of S/m. Then A = R[xy,...,2,] — S, x; — f; is a ring map such that
A — S/m is surjective (in particular finite). Hence A — S is finite by part (1) and
we see that R — S is of finite type by Lemma

If R — S is essentially of finite type, then R — S/m is essentially of finite type
by Lemma Conversely, assume that R — S/m is essentially of finite type.
Suppose S/m is the localization of R[z1,...,x,]/I. Choose fi,...,f, € S whose
congruence classes modulo m correspond to the congruence classes of z1,...,z,
modulo I. Consider the map R[z1,...,2,] — S, x; — f; with kernel J. Set
A = Rlxy,...,2,]/J C S and p = ANm. Note that A/p C S/m is equal to the
image of R[z1,...,z,]/I in S/m. Hence x(p) = S/m. Thus A, — S is finite by
part (1). We conclude that S is essentially of finite type by Lemma O

The following lemma can be proven using properness of projective space instead of
the algebraic argument we give here.
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Lemma 54.5. Let ¢ : R — S be essentially of finite type with R and S lo-
cal (but not necessarily ¢ local). Then there exists an n and a mazimal ideal
m C R[z1,...,x,] lying over mp such that S is a localization of a quotient of
R[Ila s 7xn]m-

Proof. We can write S as a localization of a quotient of R[z1,...,2,]. Hence
it suffices to prove the lemma in case S = R[z1,...,xy]q for some prime q C
Rlxy,...,zp]. If g+ mgR[xy,...,2,] # R[z1,...,2,) then we can find a maximal
ideal m as in the statement of the lemma with q C m and the result is clear.

Choose a valuation ring A C k(q) which dominates the image of R — x(q) (Lemma
50.2)). If the image A\; € k(q) of z; is contained in A, then q is contained in
the inverse image of m4 via R[z1,...,z,] — A which means we are back in the
preceding case. Hence there exists an ¢ such that )\;1 € A and such that A\;/\; € A
for all j = 1,...,n (because the value group of A is totally ordered, see Lemma
50.12)). Then we consider the map

R[y()aylw")y\ia"'vyn]%R[xlv"'axn]th yo'_)l/l:’i’ y]|—>13]/$1

Let ' C R[yo,---,¥i,---,Yn] be the inverse image of q. Since yo & q’ it is easy to
see that the displayed arrow defines an isomorphism on localizations. On the other
hand, the result of the first paragraph applies to Rlyo,...,%:,...,Yn| because y;
maps to an element of A. This finishes the proof. (I

55. K-groups

Let R be a ring. We will introduce two abelian groups associated to R. The first
of the two is denoted K()(R) and has the following propertiesﬁ

(1) For every finite R-module M there is given an element [M] in K| (R),

(2) for every short exact sequence 0 — M’ — M — M"” — 0 of finite R-
modules we have the relation [M] = [M'] + [M"],

(3) the group K| (R) is generated by the elements [M], and

(4) all relations in K (R) among the generators [M] are Z-linear combinations
of the relations coming from exact sequences as above.

The actual construction is a bit more annoying since one has to take care that
the collection of all finitely generated R-modules is a proper class. However, this
problem can be overcome by taking as set of generators of the group K|(R) the
elements [R" /K| where n ranges over all integers and K ranges over all submodules
K C R™. The generators for the subgroup of relations imposed on these elements
will be the relations coming from short exact sequences whose terms are of the form
R"™/K. The element [M] is defined by choosing n and K such that M = R"/K
and putting [M] = [R"/K]. Details left to the reader.

Lemma 55.1. If R is an Artinian local ring then the length function defines a
natural abelian group homomorphism lengthy : Kj(R) — Z.

Proof. The length of any finite R-module is finite, because it is the quotient of R™
which has finite length by Lemma And the length function is additive, see
Lemma [52.3] ]

The second of the two is denoted Ky(R) and has the following properties:

6The definition makes sense for any ring but is rarely used unless R is Noetherian.
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(1) For every finite projective R-module M there is given an element [M] in
KO (R)7

(2) for every short exact sequence 0 — M’ — M — M" — 0 of finite projective
R-modules we have the relation [M] = [M'] + [M"],

(3) the group Ky(R) is generated by the elements [M], and

(4) all relations in Ky(R) are Z-linear combinations of the relations coming
from exact sequences as above.

The construction of this group is done as above.

We note that there is an obvious map Ko(R) — K((R) which is not an isomorphism
in general.

Example 55.2. Note that if R = k is a field then we clearly have Ky(k) =
K((k) = Z with the isomorphism given by the dimension function (which is also
the length function).

Example 55.3. Let R be a PID. We claim Ky(R) = K{(R) = Z. Namely, any
finite projective R-module is finite free. A finite free module has a well defined rank
by Lemma [I5.8] Given a short exact sequence of finite free modules

0—->M —-M-—M"—0

we have rank(M) = rank(M’) + rank(M") because we have M = M’ & M’ in this
case (for example we have a splitting by Lemma . We conclude Ky(R) = Z.

The structure theorem for modules of a PID says that any finitely generated R-
module is of the form M = R®" @& R/(dy) ®...® R/(dy). Consider the short exact
sequence

0—(di) > R— R/(d;)) =0
Since the ideal (d;) is isomorphic to R as a module (it is free with generator d;),
in K{(R) we have [(d;)] = [R]. Then [R/(d;)] = [(di)] — [R] = 0. From this it
follows that a torsion module has zero class in K{j(R). Using the rank of the free

part gives an identification K)(R) = Z and the canonical homomorphism from
Ky(R) — K{(R) is an isomorphism.

Example 55.4. Let k be a field. Then Ky(k[z]) = K| (k[z]) = Z. This follows
from Example as R = k[z] is a PID.

Example 55.5. Let k be a field. Let R = {f € k[z] | f(0) = f(1)}, compare
Example In this case Ko(R) &2 k* ® Z, but K)(R) = Z.

Lemma 55.6. Let R = Ry X Ry. Then Ko(R) = Ko(R1) x Ko(R2) and K{(R) =
Ko(R1) x Ko(Ra)

Proof. Omitted. U

Lemma 55.7. Let R be an Artinian local ring. The map lengthy : K{(R) — Z of
Lemma[55.1) is an isomorphism.

Proof. Omitted. O

Lemma 55.8. Let (R, m) be a local ring. Fvery finite projective R-module is finite
free. The map rankg : Ko(R) — Z defined by [M] — rankgr (M) is well defined and
an isomorphism.
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Proof. Let P be a finite projective R-module. Choose elements z1,...,z, € P
which map to a basis of P/mP. By Nakayama’s Lemma these elements gener-
ate P. The corresponding surjection u : R®™ — P has a splitting as P is projective.
Hence R®" = P @& Q with Q = Ker(u). It follows that Q/mQ = 0, hence Q is zero
by Nakayama’s lemma. In this way we see that every finite projective R-module is
finite free. A finite free module has a well defined rank by Lemma Given a
short exact sequence of finite free R-modules

0O-M —-M-—-M'—=0

we have rank(M) = rank(M’) + rank(M"") because we have M = M’ @ M’ in this
case (for example we have a splitting by Lemma[5.2)). We conclude Ko(R) =Z. O

Lemma 55.9. Let R be a local Artinian ring. There is a commutative diagram

Ko(R) ——— Ky(R)

7'ank3l \Lle’”gthR
lengthg (R)

Z Z

where the vertical maps are isomorphisms by Lemmas[55.7 and [55.8

Proof. Let P be a finite projective R-module. We have to show that length(P) =
rank g (P)length,(R). By Lemma the module P is finite free. So P = R®™ for
some n > 0. Then rankg(P) = n and lengthr(R®") = nlengthy(R) by additivity
of lenghts (Lemma [52.3). Thus the result holds. O

56. Graded rings

A graded ring will be for us a ring S endowed with a direct sum decomposition
S = P >0 Sa of the underlying abelian group such that Sy - S. C Sqye. Note that
we do not allow nonzero elements in negative degrees. The irrelevant ideal is the
ideal Sy = @ . S4¢- A graded module will be an S-module M endowed with a
direct sum decomposition M = €P,, .5 M, of the underlying abelian group such
that Sq - M, C Myi.. Note that for modules we do allow nonzero elements in
negative degrees. We think of S as a graded S-module by setting S_; = (0) for
kE > 0. An element z (resp. f) of M (resp. S) is called homogeneous if © € My
(resp. f € Sy) for some d. A map of graded S-modules is a map of S-modules
@ : M — M’ such that ¢(My) C M. We do not allow maps to shift degrees. Let
us denote GrHomg(M, N) the Sp-module of homomorphisms of graded modules
from M to N.

At this point there are the notions of graded ideal, graded quotient ring, graded
submodule, graded quotient module, graded tensor product, etc. We leave it to the
reader to find the relevant definitions, and lemmas. For example: A short exact
sequence of graded modules is short exact in every degree.

Given a graded ring S, a graded S-module M and n € Z we denote M(n) the
graded S-module with M (n)q = M, +4. This is called the twist of M by n. In
particular we get modules S(n), n € Z which will play an important role in the
study of projective schemes. There are some obvious functorial isomorphisms such
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as (M ® N)(n) = M(n)® N(n), (M ®s N)(n) = M ®s N(n) = M(n) ®s N. In
addition we can define a graded S-module structure on the Sy-module

GrHom(M, N) = @ cz GrHom,,(M,N), GrHom,(M,N) = GrHomy(M, N(n)).
We omit the definition of the multiplication.

Lemmal 56.1. Let S be a graded ring. Let M be a graded S-module.

(1) If StM = M and M is finite, then M = 0.

(2) If NyN' C M are graded submodules, M = N + S.N’, and N’ is finite,
then M = N.

(3) If N — M is a map of graded modules, N/Sy N — M /S, M is surjective,
and M is finite, then N — M is surjective.

4) If z1,...,2, € M are homogeneous and generate M /Sy M and M is finite,
then x1,...,2x, generate M.

Proof. Proof of (1). Choose generators yi,...,y, of M over S. We may assume
that y; is homogeneous of degree d;. After renumbering we may assume d, =
min(d;). Then the condition that S M = M implies y. = 0. Hence M = 0 by
induction on r. Part (2) follows by applying (1) to M/N. Part (3) follows by
applying (2) to the submodules Im(N — M) and M. Part (4) follows by applying
(3) to the module map @ S(—d;) = M, (s1,...,8n) — Y SiT;. O

Let S be a graded ring. Let d > 1 be an integer. We set S(@) = D,.~0 Sna-
We think of S(? as a graded ring with degree n summand (S(®), = Snd._Given
a graded S-module M we can similarly consider M d = @nez M, 4 which is a
graded S¥-module.

Lemma 56.2. Let S be a graded ring, which is finitely generated over Sy. Then
for all sufficiently divisible d the algebra S'¥ is generated in degree 1 over S.

Proof. Say S is generated by fi,..., fr € S over Sy. After replacing f; by their
homogeneous parts, we may assume f; is homogeneous of degree d; > 0. Then any
element of \S,, is a linear combination with coefficients in Sy of monomials f;* ... f¢~
with > e;d; = n. Let m be a multiple of lem(d;). For any N > r if

Zeidi =Nm

then for some ¢ we have e; > m/d; by an elementary argument. Hence every

monomial of degree Nm is a product of a monomial of degree m, namely f;" / di,
and a monomial of degree (N — 1)m. It follows that any monomial of degree nrm
with n > 2 is a product of monomials of degree rm. Thus SU™) is generated in
degree 1 over Sj. O

Lemma 56.3. Let R — S be a homomorphism of graded rings. Let S C S be the
integral closure of R in S. Then

’ /
§'=€D,.,5 NS
i.e., 8" is a graded R-subalgebra of S.

Proof. We have to show the following: If s = s, + Spt1 + ... + 8 € S’, then
each homogeneous part s; € S’. We will prove this by induction on m — n over all
homomorphisms R — S of graded rings. First note that it is immediate that sg
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is integral over Ry (hence over R) as there is a ring map S — Sy compatible with
the ring map R — Ry. Thus, after replacing s by s — sg, we may assume n > 0.
Consider the extension of graded rings R[t,t~1] — S[t,t~!] where t has degree 0.
There is a commutative diagram

S[t,t71 ———— S[t,t7]
T srstdes(s) T
R[t’t—l] ristdes() . R[t,t_l]

where the horizontal maps are ring automorphisms. Hence the integral closure C'
of S[t,t~!] over R[t,t!] maps into itself. Thus we see that

t" (S + Spy1 oot 5m) — ("8 " s+ F tTs) €C

which implies by induction hypothesis that each (t™—t%)s; € C fori =n,...,m—1.
Note that for any ring A and m > i > n > 0 we have A[t,t71]/(t™ —t! — 1) =
Alt]/(#™ — t — 1) D A because t(t™~! — ti71) = 1 in A[t]/(¢t™ — ¢ — 1). Since
t™ — ' maps to 1 we see the image of s; in the ring S[t]/(t™ — t* — 1) is integral
over R[t]/(t™ —t' — 1) for i = n,...,m — 1. Since R — R[t]/(t™ — t* — 1) is finite
we see that s; is integral over R by transitivity, see Lemma [36.6] Finally, we also
conclude that s, =s— > s; is integral over R. [l

i=n,...,m—1

57. Proj of a graded ring

Let S be a graded ring. A homogeneous ideal is simply an ideal I C S which is also
a graded submodule of S. Equivalently, it is an ideal generated by homogeneous
elements. Equivalently, if f € I and

f=f+fi+. ... +fn

is the decomposition of f into homogeneous parts in S then f; € I for each i. To
check that a homogeneous ideal p is prime it suffices to check that if ab € p with
a, b homogeneous then either a € p or b € p.

Definition 57.1. Let S be a graded ring. We define Proj(S) to be the set of
homogeneous prime ideals p of S such that S, ¢ p. The set Proj(.S) is a subset of
Spec(S) and we endow it with the induced topology. The topological space Proj(S)
is called the homogeneous spectrum of the graded ring S.

Note that by construction there is a continuous map

Proj(S) — Spec(So).

Let S = ®4>05q be a graded ring. Let f € S; and assume that d > 1. We
define S5y to be the subring of Sy consisting of elements of the form r/f" with
r homogeneous and deg(r) = nd. If M is a graded S-module, then we define the
S()-module My as the sub module of M} consisting of elements of the form 2/ f"
with x homogeneous of degree nd.

Lemmal 57.2. Let S be a Z-graded ring containing a homogeneous invertible
element of positive degree. Then the set G C Spec(S) of Z-graded primes of S
(with induced topology) maps homeomorphically to Spec(Sy).
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Proof. First we show that the map is a bijection by constructing an inverse. Let
f € Sq, d > 0 be invertible in S. If py is a prime of Sy, then pyS is a Z-graded
ideal of S such that pgS NSy = po. And if ab € poS with a, b homogeneous, then
ab?/ fdesla)tdes(®) ¢y Thus either a?/f38(®) € py or b4/ fdee®) ¢ pg, in other
words either a? € poS or b? € poS. It follows that v/poS is a Z-graded prime ideal
of S whose intersection with Sy is pg.

To show that the map is a homeomorphism we show that the image of G N D(g)

is open. If g = > g; with g; € S;, then by the above G N D(g) maps onto the set
U D(g¢/ %) which is open. O

For f € S homogeneous of degree > 0 we define
D (f) ={p € Proj(S) | f & p}.

Finally, for a homogeneous ideal I C S we define
Vi(I) = {p € Proj(5) [ I C p}.

We will use more generally the notation V(E) for any set E of homogeneous
elements £ C S.

00JP Lemma 57.3 (Topology on Proj). Let S = @®4>054 be a graded ring.
(1) The sets Dy (f) are open in Proj(S).

(2) We have Dy (ff) = Dy (f) N D (f').
(3) Let g=go+ ...+ gm be an element of S with g; € S;. Then

D(g) N Proj(S) = (D(g0) N Proj(S)) U D+(g:)-
(4) Let go € So be a homogeneous element of degree 0. Then
D(go) N Proj($) =, . o, P(0])-
(5) The open sets Do (f) form a basis for the topology of Proj(S).

(6) Let f € S be homogeneous of positive degree. The ring Sy has a natural
Z-grading. The ring maps S — Sy < S(y) induce homeomorphisms

D, (f) < {Z-graded primes of Sy} — Spec(Sy)).

(7) There exists an S such that Proj(S) is not quasi-compact.

(8) The sets V. (I) are closed.

(9) Any closed subset T C Proj(S) is of the form Vi.(I) for some homogeneous
ideal I C S.

(10) For any graded ideal I C S we have Vi (I) = 0 if and only if Sy C /1.

Proof. Since D, (f) = Proj(S) N D(f), these sets are open. This proves (1). Also
(2) follows as D(ff') = D(f) N D(f’). Similarly the sets Vi (I) = Proj(S) NV (I)
are closed. This proves (8).

Suppose that T C Proj(S) is closed. Then we can write T' = Proj(S) NV (J) for
some ideal J C S. By definition of a homogeneous ideal if g € J, g =go+ ...+ gm
with gq € Sq then g4 € p for all p € T. Thus, letting I C S be the ideal generated
by the homogeneous parts of the elements of J we have T' = V., (I). This proves
(9)-

The formula for Proj(S) N D(g), with g € S is direct from the definitions. This
proves (3). Consider the formula for Proj(S) N D(go). The inclusion of the right
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hand side in the left hand side is obvious. For the other inclusion, suppose gg & p
with p € Proj(S). If all gof € p for all homogeneous f of positive degree, then
we see that Sy C p which is a contradiction. This gives the other inclusion. This
proves (4).

The collection of opens D(g) N Proj(S) forms a basis for the topology since the
standard opens D(g) C Spec(S) form a basis for the topology on Spec(S). By the
formulas above we can express D(g) N Proj(S) as a union of opens D, (f). Hence
the collection of opens D (f) forms a basis for the topology also. This proves (5).

Proof of (6). First we note that D, (f) may be identified with a subset (with
induced topology) of D(f) = Spec(Sy) via Lemma Note that the ring Sy
has a Z-grading. The homogeneous elements are of the form r/f™ with r € S
homogeneous and have degree deg(r/f™) = deg(r) — ndeg(f). The subset D, (f)
corresponds exactly to those prime ideals p C S; which are Z-graded ideals (i.e.,
generated by homogeneous elements). Hence we have to show that the set of Z-
graded prime ideals of Sy maps homeomorphically to Spec(S(sy). This follows from

Lemma [57.2

Let S = Z[X;, X2, X3, ...] with grading such that each X; has degree 1. Then it is
easy to see that

Proj(s) = |J~ Dy (X))
does not have a finite refinement. This proves (7).

Let I C S be a graded ideal. If v/T > S, then Vi (I) = () since every prime
p € Proj(S) does not contain S, by definition. Conversely, suppose that S, ¢ v/I.
Then we can find an element f € S such that f is not nilpotent modulo I. Clearly
this means that one of the homogeneous parts of f is not nilpotent modulo I, in
other words we may (and do) assume that f is homogeneous. This implies that
ISy # Sy, in other words that (S/I); is not zero. Hence (S/I)s) # 0 since it is
a ring which maps into (S/I);. Pick a prime q C (S/I)(y). This corresponds to a
graded prime of S/I, not containing the irrelevant ideal (S/I)+. And this in turn
corresponds to a graded prime ideal p of S, containing I but not containing S, as
desired. This proves (10) and finishes the proof. O

Example 57.4. Let R be a ring. If S = R[X] with deg(X) = 1, then the natural
map Proj(S) — Spec(R) is a bijection and in fact a homeomorphism. Namely,
suppose p € Proj(S). Since Sy ¢ p we see that X & p. Thus if aX™ € p witha € R
and n > 0, then a € p. It follows that p = ppS with po =p N R.

If p € Proj(S), then we define S,y to be the ring whose elements are fractions
r/f where r, f € S are homogeneous elements of the same degree such that f & p.
As usual we say r/f = r'/f’ if and only if there exists some f” € S homogeneous,
f" & psuch that f”(rf'—r'f) = 0. Given a graded S-module M we let M, be the
S(p)-module whose elements are fractions z/f with x € M and f € S homogeneous
of the same degree such that f & p. We say z/f = 2’/ if and only if there exists
some f” € S homogeneous, f” & p such that f’(zf’' —a'f) =0.

Lemmal 57.5. Let S be a graded ring. Let M be a graded S-module. Let p be an
element of Proj(S). Let f € S be a homogeneous element of positive degree such that
f&p,ie,peDi(f). Letp' C Sy be the element of Spec(S(y)) corresponding to
p as in Lemma m Then Sy = (S(p))p and compatibly My = (M) -
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Proof. We define a map v : M,y — (M(4))p. Let x/g € M(,). We set

W(z/g) = (wgieaf) =1 pdea(®)) j(gdea(f) / pdea(a)y,

This makes sense since deg(z) = deg(g) and since gi¢e(f) / fdes(9) & p’. We omit the
verification that v is well defined, a module map and an isomorphism. Hint: the

inverse sends (z/7)/(g/™) to (x™)/(gf™). O
Here is a graded variant of Lemma [15.2

Lemma 57.6. Suppose S is a graded ring, p;, i = 1,...,r homogeneous prime
ideals and I C Sy a graded ideal. Assume I ¢ p; for all i. Then there exists a
homogeneous element x € I of positive degree such that x & p; for all i.

Proof. We may assume there are no inclusions among the p;. The result is true
for r = 1. Suppose the result holds for » — 1. Pick « € I homogeneous of positive

degree such that « &€ p; for alli =1,...,r — 1. If € p,. we are done. So assume
x € p,. If Ipy...p,—1 C p, then I C p, a contradiction. Pick y € Ipy...pr—1
homogeneous and y & p,. Then zdee®) 4 ydea(®) works. O

Lemmal 57.7. Let S be a graded ring. Let p C S be a prime. Let q be the
homogeneous ideal of S generated by the homogeneous elements of p. Then q is a
prime ideal of S.

Proof. Suppose f,g € S are such that fg € q. Let fy (resp. g.) be the homogeneous
part of f (resp. g) of degree d (resp. €). Assume d, e are maxima such that fg # 0
and g # 0. By assumption we can write fg = > a;f; with f; € p homogeneous.
Say deg(f;) = d;. Then fqg. = > a,f; with a) to homogeneous par of degree
d+e—d;ofa; (or 0if d+e—d; <0). Hence fq € p or g. € p. Hence fq € q or
ge € q. In the first case replace f by f — f4, in the second case replace g by g — ge.
Then still fg € q but the discrete invariant d + e has been decreased. Thus we may
continue in this fashion until either f or g is zero. This clearly shows that fg € q
implies either f € q or g € q as desired. g

Lemma 57.8. Let S be a graded ring.

(1) Any minimal prime of S is a homogeneous ideal of S.
(2) Given a homogeneous ideal I C S any minimal prime over I is homoge-
neous.

Proof. The first assertion holds because the prime q constructed in Lemma
satisfies ¢ C p. The second because we may consider S/I and apply the first
part. [

Lemmal 57.9. Let R be a ring. Let S be a graded R-algebra. Let f € Si be
homogeneous. Assume that S is of finite type over R. Then

(1) the ring Sy is of finite type over R, and
or any finite graded S-module the module 18 a finite -module.
2) f fini ded S-module M th dule Mgy is a finite Sy dul

Proof. Choose fi,...,f, € S which generate S as an R-algebra. We may as-
sume that each f; is homogeneous (by decomposing each f; into its homogeneous
components). An element of Sy is a sum of the form

A e fen/fe
ZEdeE(f):Zeideg(fi) €1---enJ1 n /f
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with A, ¢, € R. Thus S(y) is generated as an R-algebra by the f{* ... fr»/f¢ with
the property that edeg(f) = > e; deg(f;). If e; > deg(f) then we can write this as

Do g = D s g permen() g pemdes(f)

Thus we only need the elements ffeg(f)/fdeg(fi) as well as the elements fy* ... fon/f©
with edeg(f) = > e; deg(f;) and e; < deg(f). This is a finite list and we see that
(1) is true.

To see (2) suppose that M is generated by homogeneous elements 21, . .., Z,,. Then
arguing as above we find that M) is generated as an S(y)-module by the finite
list of elements of the form f{*... fénx;/f¢ with edeg(f) = > e; deg(f;) + deg(z;)
and e; < deg(f). O

Lemma 57.10. Let R be a ring. Let R' be a finite type R-algebra, and let M be
a finite R'-module. There exists a graded R-algebra S, a graded S-module N and
an element f € S homogeneous of degree 1 such that

(1) R"= Sy and M = N4y (as modules),

(2) So = R and S is generated by finitely many elements of degree 1 over R,
and

(3) N is a finite S-module.

Proof. We may write R’ = R[x1,...,2,]/I for some ideal I. For an element
g € R[z1,...,z,] denote § € R[Xy,...,X,] the element homogeneous of minimal
degree such that ¢ = §(1,21,...,2,). Let I € R[Xo,...,X,] generated by all
elements §, g € I. Set S = R[Xy,...,X,]/I and denote f the image of X, in S.
By construction we have an isomorphism

S(f) —>R/, Xi/XO|—>Z‘i.
To do the same thing with the module M we choose a presentation
_ /\Dr /1. .
M = (R) /ZJEJR/{J
with k’j = (klj,...,k/}j). Let dij = deg(l;:ij). Set dj = maX{dij}. Set Kij =

ng s k;; which is homogeneous of degree d;. With this notation we set

_ oy K)o aer
N = Coker (@jg S(—d;) L) g )
which works. Some details omitted. O

58. Noetherian graded rings

A bit of theory on Noetherian graded rings including some material on Hilbert
polynomials.

Lemmal 58.1. Let S be a graded ring. A set of homogeneous elements f; € S
generates S as an algebra over Sy if and only if they generate S4 as an ideal of S.

Proof. If the f; generate S as an algebra over Sy then every element in S, is a
polynomial without constant term in the f; and hence S is generated by the f; as
an ideal. Conversely, suppose that Sy = > Sf;. We will prove that any element
f of S can be written as a polynomial in the f; with coefficients in Sy. It suffices
to do this for homogeneous elements. Say f has degree d. Then we may perform
induction on d. The case d = 0 is immediate. If d > 0 then f € S, hence we
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can write f = > ¢g;f; for some g; € S. As S is graded we can replace g; by its
homogeneous component of degree d — deg(f;). By induction we see that each g; is
a polynomial in the f; and we win. O

Lemma 58.2. A graded ring S is Noetherian if and only if Sy is Noetherian and
Sy is finitely generated as an ideal of S.

Proof. It is clear that if S is Noetherian then Sy = S/S, is Noetherian and S, is
finitely generated. Conversely, assume Sy is Noetherian and S, finitely generated
as an ideal of S. Pick generators S; = (f1,..., fn). By decomposing the f; into
homogeneous pieces we may assume each f; is homogeneous. By Lemma [58.1]| we
see that Sy[X1,...X,] — S sending X; to f; is surjective. Thus S is Noetherian
by Lemma [31.1 O

Definition 58.3. Let A be an abelian group. We say that a function f : n —
f(n) € A defined for all sufficient large integers n is a numerical polynomial if there
exists r > 0, elements ag, ..., a, € A such that

T n
=%, (7)o
for all n > 0.

The reason for using the binomial coefficients is the elementary fact that any poly-
nomial P € Q[T] all of whose values at integer points are integers, is equal to a
sum P(T) = > a; (:ZF) with a; € Z. Note that in particular the expressions (:zr_tll)
are of this form.

Lemmal 58.4. If A — A’ is a homomorphism of abelian groups and if f : n —
f(n) € A is a numerical polynomial, then so is the composition.

Proof. This is immediate from the definitions. O

Lemma 58.5. Suppose that f : n — f(n) € A is defined for all n sufficiently
large and suppose that n — f(n) — f(n — 1) is a numerical polynomial. Then f is
a numerical polynomial.

Proof. Let f(n) — f(n —1) = > (7)a; for all n > 0. Set g(n) = f(n) —
Yo (?Ll)al Then g(n) — g(n — 1) = 0 for all n > 0. Hence g is eventually con-
stant, say equal to a_;. We leave it to the reader to show that a_; + ) ;_, (?Ll)ai
has the required shape (see remark above the lemma).

Lemmal 58.6. If M is a finitely generated graded S-module, and if S is finitely
generated over Sy, then each M, is a finite So-module.

Proof. Suppose the generators of M are m,; and the generators of S are f;. By
taking homogeneous components we may assume that the m; and the f; are ho-
mogeneous and we may assume f; € S;. In this case it is clear that each M, is
generated over Sy by the “monomials” [] f{*m; whose degree is n. O

Proposition 58.7. Suppose that S is a Noetherian graded ring and M a finite
graded S-module. Consider the function

Z — K((So), nr—[M,]
see Lemma[58.0, If S is generated by elements of degree 1, then this function is a
numerical polynomial.
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Proof. We prove this by induction on the minimal number of generators of S;. If
this number is 0, then M,, = 0 for all n > 0 and the result holds. To prove the
induction step, let € S; be one of a minimal set of generators, such that the
induction hypothesis applies to the graded ring S/(x).

First we show the result holds if x is nilpotent on M. This we do by induction on
the minimal integer r such that "M = 0. If r = 1, then M is a module over S/zS
and the result holds (by the other induction hypothesis). If r > 1, then we can find
a short exact sequence 0 — M’ — M — M" — 0 such that the integers r’, 7" are
strictly smaller than r. Thus we know the result for M" and M’. Hence we get the
result for M because of the relation [Mgy] = [M)] + [M]/] in K;(So).

If x is not nilpotent on M, let M’ C M be the largest submodule on which z
is nilpotent. Consider the exact sequence 0 — M’ — M — M/M’' — 0 we see
again it suffices to prove the result for M/M’. In other words we may assume that
multiplication by x is injective.

Let M = M/xM. Note that the map z : M — M is not a map of graded S-modules,
since it does not map M, into M,. Namely, for each d we have the following short
exact sequence

O%MdgMd—i-l%Md—H —0

This proves that [Mgy1] — [My] = [M 441]. Hence we win by Lemma m O
Remark| 58.8. If S is still Noetherian but S is not generated in degree 1, then

the function associated to a graded S-module is a periodic polynomial (i.e., it is a
numerical polynomial on the congruence classes of integers modulo n for some n).

Example 58.9. Suppose that S = k[Xy,...,Xy]. By Example we may
identify Ko(k) = K{(k) = Z. Hence any finitely generated graded k[X;, ..., X4l
module gives rise to a numerical polynomial n +— dimy (M,,).

Lemma 58.10. Let k be a field. Suppose that I C k[X1,...,X4] is a nonzero
graded ideal. Let M = k[Xy,...,Xg4]/I. Then the numerical polynomial n
dimg(M,,) (see Example[58.9) has degree < d —1 (or is zero if d =1).

Proof. The numerical polynomial associated to the graded module k[X7, ..., X ]
isn — (";i‘fd) For any nonzero homogeneous f € I of degree e and any degree

n >> e we have I, D f-k[X1,..., X4]n—e and hence dimy (1) > (”ﬁ:ﬁd). Hence

dimg (M,) < (”;ﬂ'd) — ("_gzﬁd). We win because the last expression has degree

<d—1 (oris zero if d = 1). O
59. Noetherian local rings

In all of this section (R, m, x) is a Noetherian local ring. We develop some theory
on Hilbert functions of modules in this section. Let M be a finite R-module. We
define the Hilbert function of M to be the function

@nr 2 mo— length p(m™ M /m" M)
defined for all integers n > 0. Another important invariant is the function
Xur o length g (M/m™ M)
defined for all integers n > 0. Note that we have by Lemma [52.3] that

X (n) = ZZ;O P (i)-
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There is a variant of this construction which uses an ideal of definition.

Definition 59.1. Let (R, m) be a local Noetherian ring. An ideal I C R such that
VI =wm is called an ideal of definition of R.

Let I C R be an ideal of definition. Because R is Noetherian this means that
m” C I for some r, see Lemma Hence any finite R-module annihilated by a
power of I has a finite length, see Lemma [52.8 Thus it makes sense to define

or.a(n) =lengthpy(I"M/I" M) and  x7ar(n) = lengthp(M/I" T M)
for all n > 0. Again we have that

n

Xr,m(n) = Zi:O o1, (i)

Lemmal 59.2. Suppose that M’ C M are finite R-modules with finite length
quotient. Then there exists a constants cy,co such that for all n > co we have
c1+ X1 (n—ca) < xrm(n) < e+ xru(n)
Proof. Since M /M’ has finite length there is a co > 0 such that 1M C M’'. Let
¢y = lengthp(M/M'). For n > co we have
xrm(n) = lengthp(M/I"F1M)
c1 + length p (M’ /1" M)
c1 + length o (M’ /1" M)
= ¢+ XI,Mm (n)

On the other hand, since 1M C M’, we have I"M C I"~“2M’ for n > co. Thus
for n > co we get

IN

xr.m(n) = lengthp(M/I" M)

c1 + length (M’ /1" M)
1+ lengthp (M' /1" 12 M)
e+ xr,m(n—c2)

which finishes the proof. U

Y

Lemmal 59.3. Suppose that 0 — M’ — M — M" — 0 is a short exact sequence
of finite R-modules. Then there exists a submodule N C M' with finite colength 1
and ¢ > 0 such that

xr,m(n) = xr,m7(n) + xr,n(n—c)+1
and
erm(n) = ormr(n) +ern(n—c)
for alln > c.

Proof. Note that M/I"M — M"/I"M" is surjective with kernel M'/M' NI"M.
By the Artin-Rees Lemma there exists a constant ¢ such that M’ N I"M =
I"=e(M' N I°M). Denote N = M’ NI°M. Note that I°M’ C N C M’. Hence
lengthp (M’ /M’ N I"M) = lengthp(M'/N) + lengthp(N/I"¢N) for n > ¢. From
the short exact sequence

0— M /M NI"M — M/I"M — M"/I"M" — 0
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and additivity of lengths (Lemma [52.3]) we obtain the equality
xr,m(n—1) = xr,m(n = 1) + xr,n(n — ¢ — 1) + lengthp (M'/N)

for n > ¢. We have o1 pr(n) = xr,m(n) —xr,m(n—1) and similarly for the modules
M" and N. Hence we get o1 ar(n) = ora(n) + @rn(n—c) for n > c. O

Lemmal 59.4. Suppose that I, I' are two ideals of definition for the Noetherian
local ring R. Let M be a finite R-module. There exists a constant a such that
xr,m(n) < xr,m(an) forn > 1.

Proof. There exists an integer ¢ > 1 such that (I')° C I. Hence we get a surjection
M /(IO M — M/ M. Whence the result with a = 2¢ — 1. O

Proposition|59.5. Let R be a Noetherian local ring. Let M be a finite R-module.
Let I C R be an ideal of definition. The Hilbert function i ar and the function
X1,m are numerical polynomials.

Proof. Consider the graded ring S = R/I®I/I?®I?/I? & ... = @ o0 14/
Consider the graded S-module N = M/IM & IM/IPM & ... = @50 [*M/I7 M.
This pair (S, N) satisfies the hypotheses of Proposition m Hence the result for

@1, follows from that proposition and Lemma [55.1} The result for x; as follows
from this and Lemma [58.5) O

Definition 59.6. Let R be a Noetherian local ring. Let M be a finite R-module.
The Hilbert polynomial of M over R is the element P(t) € Q[t] such that P(n) =
orm(n) for n>> 0.

By Proposition [59.5 we see that the Hilbert polynomial exists.

Lemmal 59.7. Let R be a Noetherian local ring. Let M be a finite R-module.
(1) The degree of the numerical polynomial pr ar is independent of the ideal of
definition I.
(2) The degree of the numerical polynomial x1.ar is independent of the ideal of
definition I.

Proof. Part (2) follows immediately from Lemma Part (1) follows from (2)
because ¢r p(n) = x1,m(n) — xr,m(n—1) for n > 1. O

Definition 59.8. Let R be a local Noetherian ring and M a finite R-module. We
denote d(M) the element of {—00,0,1,2,...} defined as follows:

(1) If M =0 we set d(M) = —o0,

(2) if M # 0 then d(M) is the degree of the numerical polynomial x ;.

If m"M # 0 for all n, then we see that d(M) is the degree +1 of the Hilbert
polynomial of M.

Lemma 59.9. Let R be a Noetherian local ring. Let I C R be an ideal of definition.
Let M be a finite R-module which does not have finite length. If M’ C M is
a submodule with finite colength, then xr1m — Xr1,Mm %5 a polynomial of degree <
degree of either polynomial.

Proof. Follows from Lemma by elementary calculus. [
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Lemma 59.10. Let R be a Noetherian local ring. Let I C R be an ideal of
definition. Let 0 — M' — M — M"” — 0 be a short exact sequence of finite
R-modules. Then

(1) if M’ does not have finite length, then x1,nm — X1,M7 — X1,M7 15 @ numerical

polynomial of degree < the degree of X1 M,

(2) max{deg(xr,n),deg(xr,m~)} = deg(x1,m), and

(3) max{d(M’),d(M")} = d(M),
Proof. We first prove (1). Let N C M’ be as in Lemma [59.3] By Lemma the

numerical polynomial x7 v — X1~ has degree < the common degree of xy s and
x1,n- By Lemma [59.3] the difference

XI,M(TL) — XI,M" (n) - XI,N(n - C)

is constant for n > 0. By elementary calculus the difference xy n(n) — xr.n(n —c)
has degree < the degree of x;n which is bigger than zero (see above). Putting
everything together we obtain (1).

Note that the leading coeflicients of xr s and xr a~ are nonnegative. Thus the
degree of x7 am + xr1,m7 is equal to the maximum of the degrees. Thus if M’ does
not have finite length, then (2) follows from (1). If M’ does have finite length, then
I"M — I""M" is an isomorphism for all n >> 0 by Artin-Rees (Lemma . Thus
M/I"M — M"/I"M" is a surjection with kernel M’ for n > 0 and we see that
x1,m(n) — xr,mr(n) =length(M’) for all n > 0. Thus (2) holds in this case also.

Proof of (3). This follows from (2) except if one of M, M’, or M" is zero. We omit
the proof in these special cases. (|
60. Dimension

Please compare with Topology, Section

Definition 60.1. Let R be a ring. A chain of prime ideals is a sequence py C
p1 C ... C p, of prime ideals of R such that p; # p;1 for i =0,...,n — 1. The
length of this chain of prime ideals is n.

Recall that we have an inclusion reversing bijection between prime ideals of a ring
R and irreducible closed subsets of Spec(R), see Lemma

Definition 60.2. The Krull dimension of the ring R is the Krull dimension of the
topological space Spec(R), see Topology, Definition In other words it is the
supremum of the integers n > 0 such that R has a chain of prime ideals

PoCP1 C ... CPny Pi#Pit1-
of length n.

Definition 60.3. The height of a prime ideal p of a ring R is the dimension of the
local ring Ry,.

Lemma 60.4. The Krull dimension of R is the supremum of the heights of its
(mazximal) primes.

Proof. This is so because we can always add a maximal ideal at the end of a chain
of prime ideals. O
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Lemmal 60.5. A Noetherian ring of dimension 0 is Artinian. Conversely, any
Artinian ring is Noetherian of dimension zero.

Proof. Assume R is a Noetherian ring of dimension 0. By Lemma the space
Spec(R) is Noetherian. By Topology, Lemma we see that Spec(R) has finitely
many irreducible components, say Spec(R) = Z; U ... U Z,.. According to Lemma
each Z; = V(p;) with p; a minimal ideal. Since the dimension is 0 these p;
are also maximal. Thus Spec(R) is the discrete topological space with elements p;.
All elements f of the Jacobson radical (1] p; are nilpotent since otherwise Ry would
not be the zero ring and we would have another prime. By Lemma R is equal
to [[ Rp,. Since Ry, is also Noetherian and dimension 0, the previous arguments
show that its radical p; Ry, is locally nilpotent. Lemma [32.3] gives p}' R, = 0 for
some n > 1. By Lemma @ we conclude that Ry, has finite length over R. Hence
we conclude that R is Artinian by Lemma [53.6]

If R is an Artinian ring then by Lemma [53.6]it is Noetherian. All of its primes are
maximal by a combination of Lemmas [53.9} [55.4] and [53.5] O

In the following we will use the invariant d(—) defined in Definition [59.8] Here is a
warm up lemma.

Lemma 60.6. Let R be a Noetherian local ring. Then dim(R) =0 < d(R) = 0.

Proof. This is because d(R) = 0 if and only if R has finite length as an R-module.
See Lemma [53.0 g

Proposition 60.7. Let R be a ring. The following are equivalent:
(1) R is Artinian,

)

) R has finite length as a module over itself,

) R is a finite product of Artinian local rings,

) R is Noetherian and Spec(R) is a finite discrete topological space,

) R is a finite product of Noetherian local rings of dimension 0,

) R is a finite product of Noetherian local rings R; with d(R;) =0,

) R is a finite product of Noetherian local rings R; whose mazximal ideals are
nilpotent,
(9) R is Noetherian, has finitely many mazimal ideals and its Jacobson radical

ideal is nilpotent, and
(10) R is Noetherian and there are no strict inclusions among its primes.

Proof. This is a combination of Lemmas [53.5} [53.6] [60.5] and [60.6] [l

Lemma 60.8. Let R be a local Noetherian ring. The following are equivalent:
1) dim(R) =1,

2) d(R) =1,

) there exists an x € m, x not nilpotent such that V(z) = {m},

w

4) there exists an x € m, x not nilpotent such that m = /(x), and
5) there exists an ideal of definition generated by 1 element, and no ideal of
definition is generated by 0 elements.

(
(
(
(
(

Proof. First, assume that dim(R) = 1. Let p; be the minimal primes of R. Because
the dimension is 1 the only other prime of R is m. According to Lemma [31.6] there
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are finitely many. Hence we can find z € m, z ¢ p;, see Lemma([5.2] Thus the only
prime containing x is m and hence .

If (3) then m = /(x) by Lemma and hence . The converse is clear as well.
The equivalence of and follows from directly the definitions.

Assume . Let I = (z) be an ideal of definition. Note that I™/I" ™! is a quotient
of R/I via multiplication by 2z and hence lengthpg(I"/I"!) is bounded. Thus
d(R) =0or d(R) =1, but d(R) = 0 is excluded by the assumption that 0 is not an
ideal of definition.

Assume . To get a contradiction, assume there exist primes p C q C m, with
both inclusions strict. Pick some ideal of definition I C R. We will repeatedly use
Lemma First of all it implies, via the exact sequence 0 = p — R — R/p — 0,
that d(R/p) < 1. But it clearly cannot be zero. Pick = € q, & p. Consider the
short exact sequence

0— R/p — R/p — R/(xR+p) — 0.

This implies that X7 r/p — X1,R/p — XI,R/(¢R+p) = —XI,R/(zR+p) has degree < 1. In
other words, d(R/(zR+p)) = 0, and hence dim(R/(zR+p)) = 0, by Lemma [60.6]
But R/(zR + p) has the distinct primes q/(zR + p) and m/(zR + p) which gives
the desired contradiction. (]

Proposition| 60.9. Let R be a local Noetherian ring. Let d > 0 be an integer.
The following are equivalent:

(1) dim(R) =d,

(2) d(R) = d,

(3) there exists an ideal of definition generated by d elements, and no ideal of
definition is generated by fewer than d elements.

Proof. This proof is really just the same as the proof of Lemma We will
prove the proposition by induction on d. By Lemmas [60.6| and [60.8| we may assume
that d > 1. Denote the minimal number of generators for an ideal of definition of
R by d'(R). We will prove the inequalities dim(R) > d’'(R) > d(R) > dim(R), and
hence they are all equal.

First, assume that dim(R) = d. Let p; be the minimal primes of R. According
to Lemma there are finitely many. Hence we can find z € m, = & p;, see
Lemma Note that every maximal chain of primes starts with some p;, hence
the dimension of R/xR is at most d — 1. By induction there are zs, ..., x4 which
generate an ideal of definition in R/zR. Hence R has an ideal of definition generated
by (at most) d elements.

Assume d'(R) = d. Let I = (x1,...,24) be an ideal of definition. Note that
I"/I™*! is a quotient of a direct sum of (d;ff) copies R/I via multiplication by
all degree n monomials in 1,...,24. Hence lengthy(I"/I"*1) is bounded by a

polynomial of degree d — 1. Thus d(R) < d.

Assume d(R) = d. Consider a chain of primes p C ¢ C g2 C ... C (e = m,
with all inclusions strict, and e > 2. Pick some ideal of definition I C R. We
will repeatedly use Lemma [59.10] First of all it implies, via the exact sequence
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0—p— R— R/p— 0, that d(R/p) < d. But it clearly cannot be zero. Pick
x € q, x ¢ p. Consider the short exact sequence

0—R/p— R/p— R/(xR+p)— 0.

This implies that XI,R/p — XI,R/p — XI,R/(zR+p) = —XI,R/(zR+p) has degree < d.
In other words, d(R/(xR + p)) < d — 1, and hence dim(R/(zR + p)) < d — 1, by
induction. Now R/(zR+p) has the chain of prime ideals q/(zR+p) C q2/(zR+p) C
... C ge/(xR + p) which gives e — 1 < d — 1. Since we started with an arbitrary
chain of primes this proves that dim(R) < d(R).

Reading back the reader will see we proved the circular inequalities as desired. [

Let (R, m) be a Noetherian local ring. From the above it is clear that m cannot be
generated by fewer than dim(R) variables. By Nakayama’s Lemma[20.1]the minimal
number of generators of m equals dim, () m/m2. Hence we have the following
fundamental inequality

dim(R) < dimn(m) m/mz.
It turns out that the rings where equality holds have a lot of good properties. They
are called regular local rings.

Definition 60.10. Let (R, m) be a Noetherian local ring of dimension d.
(1) A system of parameters of R is a sequence of elements x1, ..., x4 € m which
generates an ideal of definition of R,
(2) if there exist z1,...,24 € m such that m = (z1,...,24) then we call R a
reqular local ring and x4, ..., x4 a reqular system of parameters.

The following lemmas are clear from the proofs of the lemmas and proposition
above, but we spell them out so we have convenient references.

Lemma 60.11. Let R be a Noetherian ring. Let x € R.
(1) If p is minimal over (x) then the height of p is 0 or 1.
(2) If p,q € Spec(R) and q is minimal over (p,z), then there is no prime
strictly between p and q.

Proof. Proof of (1). If p is minimal over z, then the only prime ideal of R,
containing x is the maximal ideal pR,. This is true because the primes of R,
correspond 1-to-1 with the primes of R contained in p, see Lemma [17.5] Hence
Lemma shows dim(R,) = 1 if « is not nilpotent in R,. Of course, if z is
nilpotent in R, the argument gives that pR, is the only prime ideal and we see
that the height is 0.

Proof of (2). By part (1) we see that q/p is a prime of height 1 or 0 in R/p. This
immediately implies there cannot be a prime strictly between p and q. [

Lemma 60.12. Let R be a Noetherian ring. Let f1,..., fr € R.
(1) If p is minimal over (f1,..., fr) then the height of p is <r.
(2) Ifp,q € Spec(R) and q is minimal over (p, f1,..., fr), then every chain of
primes between p and q has length at most r.

Proof. Proof of (1). If p is minimal over f1,..., f, then the only prime ideal of R,
containing fi,..., fr is the maximal ideal pR,. This is true because the primes of
Ry, correspond 1-to-1 with the primes of R contained in p, see Lemma [I7.5] Hence

Proposition shows dim(R,) < r.
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Proof of (2). By part (1) we see that q/p is a prime of height < r. This immediately
implies the statement about chains of primes between p and q. (]

Lemmal 60.13. Suppose that R is a Noetherian local ring and x € m an element
of its maximal ideal. Then dim R < dim R/xR + 1. If x is not contained in any of
the minimal primes of R then equality holds. (For example if x is a nonzerodivisor.)

Proof. If x1,...,Zd4im r/zr € R map to elements of R/xR which generate an ideal
of definition for R/xR, then x,1,...,Zqim r/xr generate an ideal of definition for
R. Hence the inequality by Proposition On the other hand, if z is not
contained in any minimal prime of R, then the chains of primes in R/zR all give
rise to chains in R which are at least one step away from being maximal. ]

Lemma 60.14. Let (R,m) be a Noetherian local ring. Suppose x1,...,24 € m
generate an ideal of definition and d = dim(R). Then dim(R/(x1,...,2;)) =d —1
foralli=1,...,d.

Proof. Follows either from the proof of Proposition or by using induction on
d and Lemma [60.13 O

61. Applications of dimension theory

We can use the results on dimension to prove certain rings have infinite spectra and
to produce more Jacobson rings.

Lemmal61.1. Let R be a Noetherian local domain of dimension > 2. A nonempty
open subset U C Spec(R) is infinite.

Proof. To get a contradiction, assume that U C Spec(R) is finite. In this case
(0) € U and {(0)} is an open subset of U (because the complement of {(0)} is
the union of the closures of the other points). Thus we may assume U = {(0)}.
Let m C R be the maximal ideal. We can find an x € m, = # 0 such that
V(x) UU = Spec(R). In other words we see that D(z) = {(0)}. In particular we
see that dim(R/xR) = dim(R) — 1 > 1, see Lemma @ Let Ys, - -+ Yaim(r) €
R/xR generate an ideal of definition of R/xR, see Proposition Choose lifts
Y2, -+ > Ydim(r) € I, 80 that @, 92, ..., ydim(r) generate an ideal of definition in R.
This implies that dim(R/(y2)) = dim(R) — 1 and dim(R/(y2,z)) = dim(R) — 2,
see Lemma Hence there exists a prime p containing y» but not x. This
contradicts the fact that D(x) = {(0)}. O

The rings k|[[t]] where k is a field, or the ring of p-adic numbers are Noetherian
rings of dimension 1 with finitely many primes. This is the maximum dimension
for which this can happen.

Lemma 61.2. A Noetherian ring with finitely many primes has dimension < 1.

Proof. Let R be a Noetherian ring with finitely many primes. If R is a local
domain, then the lemma follows from Lemma [61.1} If R is a domain, then Ry
has dimension < 1 for all maximal ideals m by the local case. Hence dim(R) <1
by Lemma If R is general, then dim(R/q) < 1 for every minimal prime
q of R. Since every prime contains a minimal prime (Lemma 7 this implies
dim(R) < 1. O

Lemma 61.3. Let S be a nonzero finite type algebra over a field k. Then dim(S) =
0 +f and only if S has finitely many primes.
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Proof. Recall that Spec(.S) is sober, Noetherian, and Jacobson, see Lemmas
[BT5] 35.2) and [35.4} If it has dimension 0, then every point defines an irreducible
component and there are only a finite number of irreducible components (Topology,
Lemma. Conversely, if Spec(S) is finite, then it is discrete by Topology, Lemma
[18.6l and hence the dimension is 0. O

Lemma 61.4. Noetherian Jacobson rings.

(1) Any Noetherian domain R of dimension 1 with infinitely many primes is
Jacobson.

(2) Any Noetherian ring such that every prime p is either mazimal or contained
in infinitely many prime ideals is Jacobson.

Proof. Part (1) is a reformulation of Lemma [35.6]

Let R be a Noetherian ring such that every non-maximal prime p is contained in in-
finitely many prime ideals. Assume Spec(R) is not Jacobson to get a contradiction.
By Lemmas and we see that Spec(R) is a sober, Noetherian topological
space. By Topology, Lemma we see that there exists a non-maximal ideal
p C R such that {p} is a locally closed subset of Spec(R). In other words, p is not
maximal and {p} is an open subset of V(p). Consider a prime q C R with p C q.
Recall that the topology on the spectrum of (R/p)q = Rq/pRq is induced from that
of Spec(R), see Lemmas and Hence we see that {(0)} is a locally closed
subset of Spec((R/p)q). By Lemm we conclude that dim((R/p)q) = 1. Since
this holds for every q D p we conclude that dim(R/p) = 1. At this point we use
the assumption that p is contained in infinitely many primes to see that Spec(R/p)
is infinite. Hence by part (1) of the lemma we see that V(p) = Spec(R/p) is the
closure of its closed points. This is the desired contradiction since it means that
{p} C V(p) cannot be open. O

62. Support and dimension of modules
Some basic results on the support and dimension of modules.

Lemma 62.1. Let R be a Noetherian ring, and let M be a finite R-module. There
exists a filtration by R-submodules

O=MycM;C...CM,=M

such that each quotient M;/M;_ is isomorphic to R/p; for some prime ideal p; of
R.

First proof. By Lemma it suffices to do the case M = R/I for some ideal I.
Consider the set S of ideals J such that the lemma does not hold for the module
R/J, and order it by inclusion. To arrive at a contradiction, assume that S is
not empty. Because R is Noetherian, S has a maximal element J. By definition
of S, the ideal J cannot be prime. Pick a,b € R such that ab € J, but neither
a € J nor b € J. Consider the filtration 0 C aR/(J NaR) C R/J. Note that both
the submodule aR/(J N aR) and the quotient module (R/J)/(aR/(J N aR)) are
cyclic modules; write them as R/J" and R/J" so we have a short exact sequence
0— R/J — R/J— R/J" — 0. The inclusion J C J' is strict as b € J" and the
inclusion J C J” is strict as a € J”. Hence by maximality of J, both R/J" and
R/J" have a filtration as above and hence so does R/J. Contradiction. O
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Second proof. For an R-module M we say P(M) holds if there exists a filtration
as in the statement of the lemma. Observe that P is stable under extensions and
holds for 0. By Lemma[5.4]it suffices to prove P(R/I) holds for every ideal I. If not
then because R is Noetherian, there is a maximal counter example J. By Example
and Proposition the ideal J is prime which is a contradiction. O

Lemma 62.2. Let R, M, M;, p; as in Lemma m Then Supp(M) = JV (p;)
and in particular p; € Supp(M).

Proof. This follows from Lemmas [40.5] and [£0.91 O

Lemma 62.3. Suppose that R is a Noetherian local ring with mazximal ideal m.
Let M be a nonzero finite R-module. Then Supp(M) = {m} if and only if M has
finite length over R.

Proof. Assume that Supp(M) = {m}. It suffices to show that all the primes p; in
the filtration of Lemma [62.1] are the maximal ideal. This is clear by Lemma [62.2

Suppose that M has finite length over R. Then m™M = 0 by Lemma [52.4] Since
some element of m maps to a unit in R, for any prime p # min R wesee M, = 0. [

Lemma 62.4. Let R be a Noetherian ring. Let I C R be an ideal. Let M be a
finite R-module. Then I"M =0 for some n > 0 if and only if Supp(M) C V(I).

Proof. Indeed, I"M = 0 is equivalent to I™ C Ann(M). Since R is Noetherian,
this is equivalent to I C \/Ann(M), see Lemma This in turn is equivalent
to V(I) D V(Ann(M)), see Lemma By Lemma this is equivalent to
V(I) D Supp(M). O

Lemma 62.5. Let R, M, M;, p; as in Lemma . The minimal elements of the
set {p;} are the minimal elements of Supp(M). The number of times a minimal
prime p occurs is

#{i | p; = p} = lengthp M,.

Proof. The first statement follows because Supp(M) = |JV (p;), see Lemma [62.2]
Let p € Supp(M) be minimal. The support of M, is the set consisting of the
maximal ideal pR,. Hence by Lemmathe length of M, is finite and > 0. Next
we note that M, has a filtration with subquotients (R/p;), = Rp/p;Rp. These are
zero if p; ¢ p and equal to k(p) if p; C p because by minimality of p we have p; = p
in this case. The result follows since x(p) has length 1. O

Lemma 62.6. Let R be a Noetherian local ring. Let M be a finite R-module.
Then d(M) = dim(Supp(M)) where d(M) is as in Definition [59.8

Proof. Let M;,p; be as in Lemma By Lemma we obtain the equality
d(M) = max{d(R/p;)}. By Proposition [60.9] we have d(R/p;) = dim(R/p;). Triv-
ially dim(R/p;) = dim V(p;). Since all minimal primes of Supp(M) occur among
the p; (Lemma [62.5) we win. O

Lemma 62.7. Let R be a Noetherian ring. Let 0 — M’ — M — M"” — 0 be a
short exact sequence of finite R-modules. Then max{dim(Supp(M")), dim(Supp(M"")

dim(Supp(M)).

)

}
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Proof. If R is local, this follows immediately from Lemmas and [59.10] A
more elementary argument, which works also if R is not local, is to use that
Supp(M'), Supp(M"), and Supp(M) are closed (Lemma[40.5)) and that Supp(M) =

Supp(M’) U Supp(M") (Lemma [40.9)). O

63. Associated primes

Here is the standard definition. For non-Noetherian rings and non-finite modules
it may be more appropriate to use the definition in Section [66]

Definition 63.1. Let R be a ring. Let M be an R-module. A prime p of R is
associated to M if there exists an element m € M whose annihilator is p. The set
of all such primes is denoted Assr(M) or Ass(M).

Lemma 63.2. Let R be a ring. Let M be an R-module. Then Ass(M) C Supp(M).

Proof. If m € M has annihilator p, then in particular no element of R\p annihilates
m. Hence m is a nonzero element of M,, i.e., p € Supp(M). O

Lemma 63.3. Let R be a ring. Let 0 - M’ — M — M"” — 0 be a short
exact sequence of R-modules. Then Ass(M') C Ass(M) and Ass(M) C Ass(M') U
Ass(M"). Also Ass(M' & M") = Ass(M") U Ass(M").

Proof. If m’ € M’, then the annihilator of m’ viewed as an element of M’ is
the same as the annihilator of m’ viewed as an element of M. Hence the inclusion
Ass(M') C Ass(M). Let m € M be an element whose annihilator is a prime ideal p.
If there exists a g € R, g € p such that m’ = gm € M’ then the annihilator of m’ is
p. If there does not exist a g € R, g € p such that gm € M’ then the annilator of the
image m” € M" of m is p. This proves the inclusion Ass(M) C Ass(M')UAss(M").
We omit the proof of the final statement. O

Lemma 63.4. Let R be a ring, and M an R-module. Suppose there exists a
filtration by R-submodules

O=MycM;C...CM,=M

such that each quotient M;/M;_y is isomorphic to R/p; for some prime ideal p; of
R. Then Ass(M) C {p1,...,pn}

Proof. By induction on the length n of the filtration {M;}. Pick m € M whose
annihilator is a prime p. If m € M,,_; we are done by induction. If not, then m
maps to a nonzero element of M/M,,_1 = R/p,. Hence we have p C p,,. If equality
does not hold, then we can find f € p,,, f & p. In this case the annihilator of fm
is still p and fm € M,,_1. Thus we win by induction. ]

Lemmal 63.5. Let R be a Noetherian ring. Let M be a finite R-module. Then
Ass(M) is finite.

Proof. Immediate from Lemma [63.4] and Lemma [62.1] O

Proposition 63.6. Let R be a Noetherian ring. Let M be a finite R-module. The
following sets of primes are the same:

(1) The minimal primes in the support of M.

(2) The minimal primes in Ass(M).

(3) For any filtration 0 = My C M; C ... C M,y C M, = M with
M;/M;_1 = R/p; the minimal primes of the set {p;}.
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Proof. Choose a filtration as in (3). In Lemma we have seen that the sets in
(1) and (3) are equal.

Let p be a minimal element of the set {p;}. Let ¢ be minimal such that p = p,.
Pick m € M;, m & M;_1. The annihilator of m is contained in p; = p and contains
pip2...p;. By our choice of ¢ and p we have p; ¢ p for j < ¢ and hence we have
pipe...pi—1 € p;. Pick f € p1po...pi—1, f € p. Then fm has annihilator p.
In this way we see that p is an associated prime of M. By Lemma we have
Ass(M) C Supp(M) and hence p is minimal in Ass(M). Thus the set of primes in
(1) is contained in the set of primes of (2).

Let p be a minimal element of Ass(M). Since Ass(M) C Supp(M) there is a
minimal element g of Supp(M) with q C p. We have just shown that q € Ass(M).
Hence q = p by minimality of p. Thus the set of primes in (2) is contained in the
set of primes of (1). O

Lemma 63.7. Let R be a Noetherian ring. Let M be an R-module. Then
M = (0) & Ass(M) = 0.

Proof. If M = (0), then Ass(M) = 0 by definition. If M # 0, pick any nonzero
finitely generated submodule M’ C M, for example a submodule generated by
a single nonzero element. By Lemma we see that Supp(M’) is nonempty.
By Proposition this implies that Ass(M’) is nonempty. By Lemma this
implies Ass(M) # 0. O
Lemmal 63.8. Let R be a Noetherian ring. Let M be an R-module. Any p €
Supp(M) which is minimal among the elements of Supp(M) is an element of
Ass(M).

Proof. If M is a finite R-module, then this is a consequence of Proposition [63.6
In general write M = |J M, as the union of its finite submodules, and use that
Supp(M) = |JSupp(M,) and Ass(M) = | Ass(M)). O

Lemma 63.9. Let R be a Noetherian ring. Let M be an R-module. The union
quAss(M) q is the set of elements of R which are zerodivisors on M.

Proof. Any element in any associated prime clearly is a zerodivisor on M. Con-
versely, suppose x € R is a zerodivisor on M. Consider the submodule N = {m €
M | zm = 0}. Since N is not zero it has an associated prime q by Lemma [63.7}
Then = € q and ¢ is an associated prime of M by Lemma [63.3 O

Lemma 63.10. Let R is a Noetherian local ring, M a finite R-module, and f € m
an element of the maximal ideal of R. Then
dim(Supp(M/fM)) < dim(Supp(M)) < dim(Supp(M/fM)) + 1

If f is not in any of the minimal primes of the support of M (for example if f is
a nonzerodivisor on M ), then equality holds for the right inequality.

Proof. (The parenthetical statement follows from Lemma ) The first inequal-
ity follows from Supp(M/fM) C Supp(M), see Lemma For the second in-
equality, note that Supp(M/fM) = Supp(M) NV (f), see Lemma It follows,
for example by Lemma[62.2] and elementary properties of dimension, that it suffices
to show dim V(p) < dim(V (p) NV (f)) + 1 for primes p of R. This is a consequence
of Lemma [60.13] Finally, if f is not contained in any minimal prime of the support
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of M, then the chains of primes in Supp(M/fM) all give rise to chains in Supp(M)
which are at least one step away from being maximal. ([

Lemmal 63.11. Let ¢ : R — S be a ring map. Let M be an S-module. Then
Spec(p)(Asss(M)) C Assg(M).

Proof. If q € Assg(M), then there exists an m in M such that the annihilator of
m in S is q. Then the annihilator of m in R is q N R. (]

Remark| 63.12. Let ¢ : R — S be a ring map. Let M be an S-module. Then it
is not always the case that Spec(p)(Assg(M)) D Assg(M). For example, consider
the ring map R = k — S = k[z1, 29, 23,...]/(2?) and M = S. Then Assg(M) is
not empty, but Assg(S) is empty.

Lemmal 63.13. Let ¢ : R — S be a ring map. Let M be an S-module. If S is
Noetherian, then Spec(p)(Asss(M)) = Assr(M).

Proof. We have already seen in Lemmal[63.11|that Spec(¢)(Assg(M)) C Assg(M).
For the converse, choose a prime p € Assg(M). Let m € M be an element such
that the annihilator of m in Ris p. Let I = {g € S | gm = 0} be the annihilator
of min S. Then R/p C S/I is injective. Combining Lemmas and we see
that there is a prime g C S minimal over I mapping to p. By Proposition [63.6] we
see that g is an associated prime of S/I, hence q is an associated prime of M by
Lemma [63.3 and we win. O

Lemma 63.14. Let R be a ring. Let I be an ideal. Let M be an R/I-module. Via
the canonical injection Spec(R/I) — Spec(R) we have Assg (M) = Assp(M).

Proof. Omitted. (]

Lemma 63.15. Let R be a ring. Let M be an R-module. Let p C R be a prime.
(1) Ifp € Ass(M) then pR, € Ass(M,).
(2) If p is finitely generated then the converse holds as well.

Proof. If p € Ass(M) there exists an element m € M whose annihilator is p. As
localization is exact (Proposition we see that the annihilator of m/1 in M,
is pRy, hence (1) holds. Assume pR, € Ass(M,) and p = (f1,..., fn). Let m/g be
an element of M, whose annihilator is pR,. This implies that the annihilator of m
is contained in p. As fym/g = 0 in M, we see there exists a g, € R, g; € p such
that g;fin = 0 in M. Combined we see the annihilator of g; ... g,m is p. Hence
p € Ass(M). O

Lemma 63.16. Let R be a ring. Let M be an R-module. Let S C R be a
multiplicative subset. Via the canonical injection Spec(S™'R) — Spec(R) we have
(1) ASSR(S_IM) = ASSS—lR(S_lM),
(2) Assgp(M) N Spec(S™IR) C Assr(S™'M), and
(3) if R is Noetherian this inclusion is an equality.

Proof. The first equality follows, since if m € S~'M, then the annihilator of m
in R is the intersection of the annihilator of m in S™!'R with R. The displayed
inclusion and equality in the Noetherian case follows from Lemma [63.15] since for
peR, SNp=0wehave M, = (S7'M)g-1,. O
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Lemma 63.17. Let R be a ring. Let M be an R-module. Let S C R be a
multiplicative subset. Assume that every s € S is a nonzerodivisor on M. Then
Assp(M) = Assp(S™1M).

Proof. As M C S™'M by assumption we get the inclusion Ass(M) C Ass(S~1M)
from Lemma Conversely, suppose that n/s € S™'M is an element whose
annihilator is a prime ideal p. Then the annihilator of n € M is also p. [

Lemma 63.18. Let R be a Noetherian local ring with mazimal ideal m. Let I C m
be an ideal. Let M be a finite R-module. The following are equivalent:

(1) There exists an x € I which is not a zerodivisor on M.
(2) We have I ¢ q for all q € Ass(M).

Proof. If there exists a nonzerodivisor x in I, then x clearly cannot be in any
associated prime of M. Conversely, suppose I ¢ q for all ¢ € Ass(M). In this
case we can choose x € I, x & q for all q € Ass(M) by Lemmas and By
Lemma the element x is not a zerodivisor on M. O

Lemma 63.19. Let R be a ring. Let M be an R-module. If R is Noetherian the

map
M — HpeAss(M) My

s injective.

Proof. Let x € M be an element of the kernel of the map. Then if p is an

associated prime of Rx C M we see on the one hand that p € Ass(M) (Lemma

63.3]) and on the other hand that (Rxz), C M, is not zero. This contradiction shows

that Ass(Rz) = (). Hence Rz = 0 by Lemma [63.7] O

This lemma should probably be put somewhere else.

Lemma 63.20. Let k be a field. Let S be a finite type k algebra. If dim(S) > 0,
then there exists an element f € S which is a nonzerodivisor and a nonunit.

Proof. By Lemma the ring S has finitely many associated prime ideals. By
Lemma [61.3] the ring S has infinitely many maximal ideals. Hence we can choose
a maximal ideal m C S which is not an associated prime of S. By prime avoidance
(Lemma7 we can choose a nonzero f € m which is not contained in any of the
associated primes of S. By Lemma [63.9] the element f is a nonzerodivisor and as
f € m we see that f is not a unit. |

64. Symbolic powers
Here is the definition.
Definition 64.1. Let R be a ring. Let p be a prime ideal. For n > 0 the nth
symbolic power of p is the ideal p(™) = Ker(R — Ry, /p" Ry).
Note that p” C p(™) but equality does not always hold.
Lemma 64.2. Let R be a Noetherian ring. Let p be a prime ideal. Let n > 0.
Then Ass(R/p™) = {p}.

Proof. If q is an associated prime of R/p(™ then clearly p C q. On the other hand,
any element x € R, x ¢ p is a nonzerodivisor on R/p(”). Namely, if y € R and
zy € p) = RNp" R, theny € p" Ry, hence y € p(™. Hence the lemma follows. [
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Lemma 64.3. Let R — S be flat ring map. Let p C R be a prime such that
q=pS is a prime of S. Then p(™M S = q(™),

Proof. Since p™ = Ker(R — R,/p"R,) we see using flatness that p(™ S is the
kernel of the map S — S, /p"Sy. On the other hand q(™) is the kernel of the map
S — 84/q"Sq = Sq/p"Sq. Hence it suffices to show that

Sp/p" Sy — Sq/p" S,
is injective. Observe that the right hand module is the localization of the left
hand module by elements f € S, f € q. Thus it suffices to show these elements are

nonzerodivisors on S, /p™S,. By flatness, the module S, /p™ S, has a finite filtration
whose subquotients are

Pisp/pi+lsp = piRp/PiHRp ®Rr, Sp =V Qp(p) (S/a)p

where V is a k(p) vector space. Thus f acts invertibly as desired. O

65. Relative assassin

Discussion of relative assassins. Let R — S be a ring map. Let NV be an S-module.
In this situation we can introduce the following sets of primes q of S:
(1) A: with p = RN g we have that q € Assg(N ®g k(p)),
(2) A’ with p = RN q we have that q is in the image of Assgg.(p)(N ®@r K(p))
under the canonical map Spec(S ®@r k(p)) — Spec(S5),
(3) Afin: with p = RN q we have that g € Assg(N/pN),
(4) A%, for some prime p’ C R we have q € Assg(N/p'N),
(5) B: for some R-module M we have q € Assg(N ®g M), and
(6) Byin: for some finite R-module M we have q € Assg(IN @r M).

Let us determine some of the relations between theses sets.

Lemmal 65.1. Let R — S be a ring map. Let N be an S-module. Let A, A’,

Atin, B, and By, be the subsets of Spec(S) introduced above.

1) We always have A = A’.

) We always have Agy, C A, Brin C B, Apin C A’fm C Byin and A C B.

) If S is Noetherian, then A = Ay, and B = Byp,.

) If N is flat over R, then A = Ay, = A’fm and B = Byip.

) If R is Noetherian and N is flat over R, then all of the sets are equal, i.e.,
A=A =Ayp, = A}m = B = Byy.

Proof. Some of the arguments in the proof will be repeated in the proofs of later
lemmas which are more precise than this one (because they deal with a given module
M or a given prime p and not with the collection of all of them).

Proof of (1). Let p be a prime of R. Then we have
Asss(N ®p K(p)) = Assg/ps (N ®r K(p)) = AsSs@ pr(p) (N ®r K(P))

the first equality by Lemma [63.14] and the second by Lemma [63.16| part (1). This
prove that A = A’. The inclusion Ay, C A}m is clear.

Proof of (2). Each of the inclusions is immediate from the definitions except perhaps
Ayin C A which follows from Lemma [63.16] and the fact that we require p = RN q
in the formulation of Ag;,.
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Proof of (3). The equality A = Ay;, follows from Lemma part (3) if S is
Noetherian. Let ¢ = (¢1,...,9m) be a finitely generated prime ideal of S. Say
z € N®pg M is an element whose annihilator is q. We may pick a finite submodule
M’ C M such that z is the image of 2/ € N®@r M’. Then Anng(z’) C q = Anng(z).
Since N ® g — commutes with colimits and since M is the directed colimit of finite
R-modules we can find M’ ¢ M"” C M such that the image 2’/ € N g M" is
annihilated by ¢1, ..., gn. Hence Anng(z”) = q. This proves that B = By;,, if S is
Noetherian.

Proof of (4). If N is flat, then the functor N® g — is exact. In particular, if M’ C M,
then N @r M’ C N ®r M. Hence if z € N ®r M is an element whose annihilator
q = Anng(z) is a prime, then we can pick any finite R-submodule M’ C M such
that 2 € N ® g M’ and we see that the annihilator of z as an element of N ®z M’ is
equal to q. Hence B = By;,,. Let p’ be a prime of R and let q be a prime of S which
is an associated prime of N/p’N. This implies that p’S C q. As N is flat over R we
see that N/p’N is flat over the integral domain R/p’. Hence every nonzero element
of R/p’ is a nonzerodivisor on N/p’. Hence none of these elements can map to an
element of q and we conclude that p’ = RN q. Hence Ag;, = A%, Finally, by

Lemma [63.17| we see that Assg(NN/p'N) = Assg(N @p £(p)), Le., A}y, = A
Proof of (5). We only need to prove Alfm = By, as the other equalities have been
proved in (4). To see this let M be a finite R-module. By Lemma there exists
a filtration by R-submodules

0O=MyCcM;C...CM,=M
such that each quotient M;/M;_; is isomorphic to R/p; for some prime ideal p; of
R. Since N is flat we obtain a filtration by S-submodules

0=N®rMyCNRKrM, C...CNRrM, =NQrM

such that each subquotient is isomorphic to N/p;N. By Lemma we conclude
that Assg(N ®@r M) C [JAssg(N/p;N). Hence we see that By;,, C Ay, Since the

other inclusion is part of (2) we win. O

We define the relative assassin of N over S/R to be the set A = A’ above. As a
motivation we point out that it depends only on the fibre modules N ® g k(p) over
the fibre rings. As in the case of the assassin of a module we warn the reader that
this notion makes most sense when the fibre rings S ®g r(p) are Noetherian, for
example if R — S is of finite type.

Definition 65.2. Let R — S be a ring map. Let N be an S-module. The relative
assassin of N over S/R is the set

Assg/r(N) ={qC S| q€ Asss(N ®r £(p)) with p = RN q}.
This is the set named A in Lemma

The spirit of the next few results is that they are about the relative assassin, even
though this may not be apparent.

Lemma 65.3. Let R — S be a ring map. Let M be an R-module, and let N be
an S-module. If N is flat as R-module, then

Asss(M @ N) D UpeASSR(M) Asss(N/pN)

and if R is Noetherian then we have equality.
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Proof. If p € Assgp(M) then there exists an injection R/p — M. As N is flat over
R we obtain an injection R/p @ g N — M ®p N. Since R/p @ g N = N/pN we
conclude that Assg(N/pN) C Assg(M ®r N), see Lemma Hence the right
hand side is contained in the left hand side.

Write M = |J M) as the union of its finitely generated R-submodules. Then also
N®rM =|JN ®r M) (as N is R-flat). By definition of associated primes we see
that Assg(N ®@r M) = |JAsss(N ®g M) and Assg(M) = |JAss(M)). Hence we
may assume M is finitely generated.

Let q € Assg(M ®pr N), and assume R is Noetherian and M is a finite R-module.
To finish the proof we have to show that ¢ is an element of the right hand side.
First we observe that qSq € Assg, ((M ®gr N)q), see Lemma Let p be the
corresponding prime of R. Note that

(M ®Rr N)qg=M®r Nq =M, ®r, Nq

If pR, ¢ Assg, (M,) then there exists an element = € pR), which is a nonzerodivisor
in M, (see Lemma [63.18]). Since Ny is flat over R, we see that the image of = in
454 is a nonzerodivisor on (M ®r N)4. This is a contradiction with the assumption
that qS; € Assg((M ®g N)q). Hence we conclude that p is one of the associated
primes of M.
Continuing the argument we choose a filtration

O:MQCMlc...CMn:M

such that each quotient M;/M;_; is isomorphic to R/p; for some prime ideal p; of
R, see Lemma (By Lemma we have p; = p for at least one 7.) This gives
a filtration

0=MyQpr NCMi@rNC...CM, g N =M ®r N

with subquotients isomorphic to N/p;N. If p; # p then q cannot be associated to the
module N/p;N by the result of the preceding paragraph (as Assg(R/p;) = {p:}).
Hence we conclude that q is associated to N/pN as desired. ]

Lemmal 65.4. Let R — S be a ring map. Let N be an S-module. Assume N is
flat as an R-module and R is a domain with fraction field K. Then

Assg(N) = Assg(N @g K) = Asssgrr (N @ K)
via the canonical inclusion Spec(S ®p K) C Spec(S).

Proof. Note that S ®pr K = (R\ {0})"'S and N ®g K = (R\ {0})"!N. For any
nonzero z € R multiplication by z on N is injective as N is flat over R. Hence the
lemma follows from Lemma [63.17| combined with Lemma [63.16] part (1). [

Lemmal 65.5. Let R — S be a ring map. Let M be an R-module, and let N be
an S-module. Assume N is flat as R-module. Then

Asss(M ®r N) D Asss6pr(p) (N @R K(p))

pEAssgr(M)

where we use Remark to think of the spectra of fibre rings as subsets of Spec(.S).
If R is Noetherian then this inclusion is an equality.

Proof. This is equivalent to Lemma by Lemmas [63.14], [39.7] and [65.4] (]
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Remark| 65.6. Let R — S be a ring map. Let N be an S-module. Let p be a
prime of R. Then

Asss(N @p k(p)) = Assg/ps(N @ K(P)) = AsSsg ur(p) (N @r K(P)).
The first equality by Lemma [63.14] and the second by Lemma [63.16| part (1).

66. Weakly associated primes

This is a variant on the notion of an associated prime that is useful for non-
Noetherian ring and non-finite modules.

Definition 66.1. Let R be a ring. Let M be an R-module. A prime p of R is
weakly associated to M if there exists an element m € M such that p is minimal
among the prime ideals containing the annihilator Ann(m) = {f € R | fm = 0}.
The set of all such primes is denoted WeakAssr (M) or WeakAss(M).

Thus an associated prime is a weakly associated prime. Here is a characterization
in terms of the localization at the prime.

Lemmal 66.2. Let R be a ring. Let M be an R-module. Let p be a prime of R.
The following are equivalent:

(1) p is weakly associated to M,
(2) pR, is weakly associated to My, and
(3) M, contains an element whose annthilator has radical equal to pR,,.

Proof. Assume (1). Then there exists an element m € M such that p is minimal
among the primes containing the annihilator I = {x € R | zm = 0} of m. As
localization is exact, the annihilator of m in M, is I,. Hence pR, is a minimal
prime of R, containing the annihilator I, of m in M,. This implies (2) holds, and
also (3) as it implies that /T, = pR,.

Applying the implication (1) = (3) to M, over R, we see that (2) = (3).

Finally, assume (3). This means there exists an element m/f € M, whose annihi-
lator has radical equal to pRy,. Then the annihilator I = {x € R | am = 0} of m in
M 1is such that \/E = pR,. Clearly this means that p contains / and is minimal
among the primes containing I, i.e., (1) holds. O

Lemma 66.3. For a reduced ring the weakly associated primes of the ring are the
minimal primes.

Proof. Let (R,m) be a reduced local ring. Suppose z € R is an element whose
annihilator has radical m. If m # 0, then z cannot be a unit, so x € m. Then
in particular 21t = 0 for some n > 0. Hence £ = 0. Which contradicts the
assumption that the annihilator of z is contained in m. Thus we see that m = 0,
i.e.,, Ris a field. By Lemma this implies the statement of the lemma. O

Lemma 66.4. Let R be a ring. Let 0 - M’ — M — M"” — 0 be a short exact
sequence of R-modules. Then WeakAss(M') C WeakAss(M) and WeakAss(M) C
WeakAss(M') U WeakAss(M").

Proof. We will use the characterization of weakly associated primes of Lemma
[66.21 Let p be a prime of R. As localization is exact we obtain the short exact
sequence 0 — M, — M, — M," — 0. Suppose that m € M, is an element
whose annihilator has radical pR,. Then either the image M of m in M,g’ is zero
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and m € M,, or the radical of the annihilator of m is pRy,. This proves that
WeakAss(M) C WeakAss(M') U WeakAss(M"). The inclusion WeakAss(M') C
WeakAss(M) is immediate from the definitions. O

Lemma 66.5. Let R be a ring. Let M be an R-module. Then
M = (0) & WeakAss(M) =0

Proof. If M = (0) then WeakAss(M) = 0 by definition. Conversely, suppose
that M # 0. Pick a nonzero element m € M. Write I = {z € R | zm = 0}
the annihilator of m. Then R/I C M. Hence WeakAss(R/I) C WeakAss(M) by
Lemma [66.4] But as I # R we have V(I) = Spec(R/I) contains a minimal prime,

see Lemmas and [17.7] and we win. [l
Lemma 66.6. Let R be a ring. Let M be an R-module. Then
Ass(M) C WeakAss(M) C Supp(M).

Proof. The first inclusion is immediate from the definitions. If p € WeakAss(M),
then by Lemma we have M, # 0, hence p € Supp(M). O

Lemma|66.7. Let R be a ring. Let M be an R-module. The union qu WeakAss(M) 9
is the set of elements of R which are zerodivisors on M.

Proof. Suppose f € q € WeakAss(M). Then there exists an element m € M
such that q is minimal over I = {z € R | m = 0}. Hence there exists a g € R,
g € q and n > 0 such that f"gm = 0. Note that gm # 0 as g & I. If we take
n minimal as above, then f(f""lgm) =0 and f*~tgm # 0, so f is a zerodivisor
on M. Conversely, suppose f € R is a zerodivisor on M. Consider the submodule
N ={m e M| fm = 0}. Since N is not zero it has a weakly associated prime q
by Lemma Clearly f € q and by Lemma q is a weakly associated prime
of M. O

Lemma 66.8. Let R be a ring. Let M be an R-module. Any p € Supp(M) which
is minimal among the elements of Supp(M) is an element of WeakAss(M).

Proof. Note that Supp(M,) = {pR,} in Spec(R,). In particular M, is nonzero,
and hence WeakAss(M,) # 0 by Lemma[66.5] Since WeakAss(M,) C Supp(M,) by
Lemma we conclude that WeakAss(M,) = {pR,}, whence p € WeakAss(M)
by Lemma [66.2 O

Lemma 66.9. Let R be a ring. Let M be an R-module. Let p be a prime ideal of
R which is finitely generated. Then

p € Ass(M) < p € WeakAss(M).
In particular, if R is Noetherian, then Ass(M) = WeakAss(M).

Proof. Write p = (g1,...,9,) for some g; € R. It is enough the prove the im-
plication “«<=” as the other implication holds in general, see Lemma Assume
p € WeakAss(M). By Lemma there exists an element m € M, such that
I ={z € R, | zm = 0} has radical pR,. Hence for each ¢ there exists a smallest
e; > 0 such that g;"m = 0 in M,. If e, > 1 for some 4, then we can replace m
by g 'm # 0 and decrease 3 ¢;. Hence we may assume that the annihilator of
m € M, is (g1,...,9n)Rp =pR,. By Lemmawe see that p € Ass(M). a
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Remark| 66.10. Let ¢ : R — S be a ring map. Let M be an S-module. Then
it is not always the case that Spec(y)(WeakAssg(M)) C WeakAssg(M) contrary
to the case of associated primes (see Lemma [63.11)). An example is to consider the
ring map

R= k[.’L‘17.’172,$3, .. } — S5 = k[.’lﬁl,mg, 3,5 Y1,Y2,Y3, .- .]/(wlyl,xgyg,xgyg,, .. )
and M = S. In this case ¢ = > ;S is a minimal prime of S, hence a weakly
associated prime of M = S (see Lemma [66.8). But on the other hand, for any

nonzero element of S the annihilator in R is finitely generated, and hence does not
have radical equal to RN q = (x1, 22,23, ...) (details omitted).

Lemma 66.11. Let ¢ : R — S be a ring map. Let M be an S-module. Then we
have Spec(p)( WeakAssg(M)) DO WeakAssp(M).

Proof. Let p be an element of WeakAssg(M). Then there exists an m € M, whose
annihilator I = {z € R, | xm = 0} has radical pR,. Consider the annihilator
J={x €S, | xm =0} of m in S,. As IS, C J we see that any minimal prime
q C S, over J lies over p. Moreover such a g corresponds to a weakly associated
prime of M for example by Lemma [66.2] O

Remark| 66.12. Let ¢ : R — S be a ring map. Let M be an S-module. Denote
f : Spec(S) — Spec(R) the associated map on spectra. Then we have
f(Assg(M)) C Assp(M) C WeakAssp(M) C f(WeakAssg(M))

see Lemmas[63.11], [66.11] and[66.6] In general all of the inclusions may be strict, see
Remarks [63.12] and [66.10] If S is Noetherian, then all the inclusions are equalities
as the outer two are equal by Lemma [66.9]

Lemma 66.13. Let ¢ : R — S be a ring map. Let M be an S-module. Denote
f : Spec(S) — Spec(R) the associated map on spectra. If ¢ is a finite ring map,
then

WeakAssp(M) = f(WeakAsss(M)).

Proof. One of the inclusions has already been proved, see Remark To prove
the other assume q € WeakAssg(M) and let p be the corresponding prime of R. Let
m € M be an element such that g is a minimal prime over J = {g € S | gm = 0}.
Thus the radical of JS; is gS¢. As R — § is finite there are finitely many primes
q=q1,92,--.,q; over p, see Lemma Pick x € q with = & q; for ¢ > 1, see
Lemma By the above there exists an element y € S, y € q and an integer
t > 0 such that yz‘m = 0. Thus the element ym € M is annihilated by z?, hence
ym maps to zero in Mg,, ¢ = 2,...,l. To be sure, ym does not map to zero in Sy.

The ring S, is semi-local with maximal ideals q;5, by going up for finite ring maps,
see Lemma [36.22] If f € pR,, then some power of f ends up in J.Sq hence for some
n > 0 we see that f'ym maps to zero in My. As ym vanishes at the other maximal
ideals of S, we conclude that ffym is zero in M, see Lemma In this way we
see that p is a minimal prime over the annihilator of ym in R and we win. (I

Lemma 66.14. Let R be a ring. Let I be an ideal. Let M be an R/I-module.
Via the canonical injection Spec(R/I) — Spec(R) we have WeakAssg (M) =
WeakAssp(M).

Proof. Special case of Lemma [66.13 (]
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Lemma 66.15. Let R be a ring. Let M be an R-module. Let S C R be a

multiplicative subset. Via the canonical injection Spec(S™'R) — Spec(R) we have
WeakAssgr(S™M) = WeakAssg—1(S™1M) and

WeakAss(M) N Spec(S™'R) = WeakAss(S™*M).

Proof. Suppose that m € S™'M. Let I = {x € R| am = 0} and I’ = {2’ €
SR | 'm = 0}. Then I’ = S7'T and I NS = () unless I = R (verifications
omitted). Thus primes in S~ R minimal over I’ correspond bijectively to primes in
R minimal over I and avoiding S. This proves the equality WeakAssg(S™tM) =
WeakAssg-1z(S™1M). The second equality follows from Lemma since for
peR, SNp=0wehave M, = (S™'M)g-1,. O

Lemmal 66.16. Let R be a ring. Let M be an R-module. Let S C R be a
multiplicative subset. Assume that every s € S is a nonzerodivisor on M. Then

WeakAss(M) = WeakAss(S™'M).

Proof. As M C S~'M by assumption we obtain WeakAss(M) C WeakAss(S~1M)
from Lemma Conversely, suppose that n/s € S~'M is an element with
annihilator I and p a prime which is minimal over I. Then the annihilator of
n € M is I and p is a prime minimal over I. (]

Lemma 66.17. Let R be a ring. Let M be an R-module. The map

M— HPG WeakAss(M) Mp
1s injective.
Proof. Let x € M be an element of the kernel of the map. Set N = Rx C M. If
p is a weakly associated prime of N we see on the one hand that p € WeakAss(M)

(Lemma [66.4) and on the other hand that N, C M, is not zero. This contradiction
shows that WeakAss(N) = (). Hence N =0, i.e., = 0 by Lemma [66.5| O

Lemmal 66.18. Let R — S be a ring map. Let N be an S-module. Assume N is
flat as an R-module and R is a domain with fraction field K. Then

WeakAsss(N) = WeakAsssg k(N ®@r K)
via the canonical inclusion Spec(S @ K) C Spec(S).

Proof. Note that S ®p K = (R\ {0})71S and N ®g K = (R\ {0})"!N. For any
nonzero z € R multiplication by x on N is injective as N is flat over R. Hence the
lemma follows from Lemma [66.10] O

Lemma 66.19. Let K/k be a field extension. Let R be a k-algebra. Let M be an
R-module. Let ¢ C R®y K be a prime lying over p C R. If q is weakly associated
to M @ K, then p is weakly associated to M.

Proof. Let z € M ® K be an element such that q is minimal over the annihilator
J C R® K of z. Choose a finitely generated subextension K/L/k such that
z € M ® L. Since R, L — R®y, K is flat we see that J = I(R ®; K) where
I C R®yL is the annihilator of z in the smaller ring (Lemma[40.4)). Thus qN(R®yL)
is minimal over I by going down (Lemma. In this way we reduce to the case
described in the next paragraph.
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Assume K/k is a finitely generated field extension. Let x1,...,z, € K be a tran-
scendence basis of K over k, see Fields, Section Set L = k(x1,...,x,). Say
[K : L] =n. Then R®; L — R ® K is a finite ring map. Hence ¢ N (R ®; L)
is a weakly associated prime of M ®; K viewed as a R ®; L-module by Lemma
Since M @y K = (M ®j, L)®™ as a R ®j, L-module, we see that qN (R ®y, L)
is a weakly associated prime of M ®j, L (for example by using Lemma and
induction). In this way we reduce to the case discussed in the next paragraph.

Assume K = k(x1,...,x,) is a purely transcendental field extension. We may
replace R by Ry, M by M, and q by q(R, ®k K). See Lemma [66.15 In this way
we reduce to the case discussed in the next paragraph.

Assume K = k(z1,...,2,) is a purely transcendental field extension and R is
local with maximal ideal p. We claim that any f € R®, K, f € p(R®; K) is a
nonzerodivisor on M ®; K. Namely, let z € M ®; K be an element. There is a finite
R-submodule M’ C M such that z € M’'®, K and such that M’ is minimal with this
property: choose a basis {t,} of K as a k-vector space, write z = Y m, ®t, and let
M’ be the R-submodule generated by the m,,. If z € p(M'®y K) = pM’'® K, then
pM’' = M’ and M’ = 0 by Lemma a contradiction. Thus z has nonzero image
Zin M'/pM’' ®; K But R/p ®; K is a domain as a localization of k(p)[x1, ..., zy]
and M'/pM’ ®j K is a free module, hence fZ # 0. This proves the claim.

Finally, pick z € M ®; K such that q is minimal over the annihilator J C R ®; K
of z. For f € p there existsann > 1and a g € RQy K, g & q such that gf"z € J,
i.e., gf"z = 0. (This holds because q lies over p and ¢ is minimal over J.) Above
we have seen that g is a nonzerodivisor hence f"z = 0. This means that p is a
weakly associated prime of M ®; K viewed as an R-module. Since M ®; K is a
direct sum of copies of M we conclude that p is a weakly associated prime of M as
before. O

67. Embedded primes
Here is the definition.

Definition 67.1. Let R be a ring. Let M be an R-module.
(1) The associated primes of M which are not minimal among the associated
primes of M are called the embedded associated primes of M.

(2) The embedded primes of R are the embedded associated primes of R as an
R-module.

Here is a way to get rid of these.

Lemmal 67.2. Let R be a Noetherian ring. Let M be a finite R-module. Consider
the set of R-submodules

{K C M | Supp(K) nowhere dense in Supp(M)}.

This set has a mazimal element K and the quotient M' = M /K has the following
properties

(1) Supp(M) = Supp(M’),

(2) M’ has no embedded associated primes,

(3) for any f € R which is contained in all embedded associated primes of M
we have My = MJQ
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Proof. We will use Lemma and Proposition without further mention. Let
q1,---,q: denote the minimal primes in the support of M. Let py,...,ps denote
the embedded associated primes of M. Then Ass(M) = {q;,p;}. Let

K ={me M |Supp(Rm) c | JV(p:)}

It is immediately seen to be a submodule. Since M is finite over a Noetherian
ring, we know K is finite too. Hence Supp(K’) is nowhere dense in Supp(M). Let
K’ C M be another submodule with support nowhere dense in Supp(M). This
means that Ky, = 0. Hence if m € K’, then m maps to zero in M, which in turn
implies (R”m)y; = 0. On the other hand we have Ass(Rm) C Ass(M). Hence the
support of Rm is contained in | JV(p;). Therefore m € K and thus K’ C K as m
was arbitrary in K.

Let M’ = M/K. Since K, = 0 we know Mc/|j = M,, for all j. Hence M and M’
have the same support.

Suppose q = Ann(m) € Ass(M’) where m € M’ is the image of m € M. Then
m ¢ K and hence the support of Rm must contain one of the q;. Since M,, = Mc’lj,
we know m does not map to zero in Mg . Hence q C q; (actually we have equality),
which means that all the associated primes of M’ are not embedded.

Let f be an element contained in all p;. Then D(f)Nsupp(K) = 0. Hence My = M]’c
because Ky = 0. (]

Lemma 67.3. Let R be a Noetherian ring. Let M be a finite R-module. For any
f € R we have (M')y = (My)" where M — M’ and My — (My)" are the quotients
constructed in Lemma[67.2

Proof. Omitted. (]

Lemmal 67.4. Let R be a Noetherian ring. Let M be a finite R-module without
embedded associated primes. Let I = {x € R | M = 0}. Then the ring R/I has
no embedded primes.

Proof. We may replace R by R/I. Hence we may assume every nonzero element
of R acts nontrivially on M. By Lemma this implies that Spec(R) equals
the support of M. Suppose that p is an embedded prime of R. Let x € R be
an element whose annihilator is p. Consider the nonzero module N = M C M.
It is annihilated by p. Hence any associated prime q of N contains p and is also
an associated prime of M. Then q would be an embedded associated prime of M
which contradicts the assumption of the lemma. ([

68. Regular sequences
In this section we develop some basic properties of regular sequences.
Definition 68.1. Let R be aring. Let M be an R-module. A sequence of elements

fi,--., fr of Ris called an M -regular sequence if the following conditions hold:
(1) f; is a nonzerodivisor on M/(f1,..., fi—1)M for each i =1,...,r, and
(2) the module M/(f1,..., fr)M is not zero.

If I is an ideal of R and f1,..., fr € I then we call f1,..., f, an M -reqular sequence
inI. If M =R, we call fi,..., f. simply a regular sequence (in I).
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Please pay attention to the fact that the definition depends on the order of the
elements f1,..., f (see examples below). Some papers/books drop the requirement
that the module M/(f1,..., fr)M is nonzero. This has the advantage that being a
regular sequence is preserved under localization. However, we will use this definition
mainly to define the depth of a module in case R is local; in that case the f; are
required to be in the maximal ideal — a condition which is not preserved under
going from R to a localization R,.

Example 68.2. Let k be a field. In the ring k[z, y, 2] the sequence z, y(1—z), z(1—
x) is regular but the sequence y(1 — ), z(1 — x), z is not.

Example 68.3. Let k be a field. Consider the ring k[z, y, wo, wy, ws, ...]/I where
I is generated by yw;, ¢ =0,1,2,... and w; — zw;4+1, ¢ = 0,1,2,.... The sequence
x,y is regular, but y is a zerodivisor. Moreover you can localize at the maximal
ideal (z,y,w;) and still get an example.

Lemmal 68.4. Let R be a local Noetherian ring. Let M be a finite R-module. Let
T1,...,Tc be an M-regular sequence. Then any permutation of the x; is a regular
sequence as well.

Proof. First we do the case ¢ = 2. Consider K C M the kernel of x5 : M — M. For
any z € K we know that z = z12’ for some 2’ € M because x5 is a nonzerodivisor on
M /x1 M. Because 1 is a nonzerodivisor on M we see that zo2’ = 0 as well. Hence
z1 : K — K is surjective. Thus K = 0 by Nakayama’s Lemma [20.1] Next, consider
multiplication by 21 on M/xoM. If z € M maps to an element Z € M/zoM in
the kernel of this map, then x1z = oy for some y € M. But then since x1, x is
a regular sequence we see that y = x1y’ for some ¢y’ € M. Hence z1(z — 22y’) =0
and hence z = x2y’ and hence z = 0 as desired.

For the general case, observe that any permutation is a composition of transposi-
tions of adjacent indices. Hence it suffices to prove that
L1yeeeyLj—2, L4, Lj—1,Tj41y---,L¢

is an M-regular sequence. This follows from the case we just did applied to the
module M/(x1,...,2;—2) and the length 2 regular sequence x;_1, x;. O

Lemma 68.5. Let R, S be local rings. Let R — S be a flat local ring homomor-
phism. Let x1,...,z, be a sequence in R. Let M be an R-module. The following
are equivalent

(1) z1,...,2, is an M-reqular sequence in R, and

(2) the images of x1,...,x, in S form a M ®g S-reqular sequence.
Proof. This is so because R — S is faithfully flat by Lemma [39.17] (]
Lemma 68.6. Let R be a Noetherian ring. Let M be a finite R-module. Let p be
a prime. Let x1,...,x, be a sequence in R whose image in R, forms an M,-regular

sequence. Then there exists a g € R, g & p such that the image of x1,..., 2, in Ry
forms an Mg-regular sequence.

Proof. Set
K; = Ker(mi : M/(.’El,...,$i,1)M — M/(wl,...,xi,l)M) .

This is a finite R-module whose localization at p is zero by assumption. Hence there
exists a g € R, g & p such that (K;)y =0foralli=1,...,r. This g works. a
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Lemmal 68.7. Let A be a ring. Let I be an ideal generated by a regular sequence
fiyeoosfn in A, Let g1,...,9m € A be elements whose images Gy, ...,G,, form a
reqular sequence in AJ/I. Then f1,..., fn,g1,--.,9m is a reqular sequence in A.

Proof. This follows immediately from the definitions. O

Lemma 68.8. Let R be a ring. Let 0 — My — My — M3 — 0 be a short
eract sequence of R-modules. Let f1,...,f. € R. If f1,..., fr is My-reqular and
Ms-regular, then f1,..., fr is Ma-regular.

Proof. By Lemma if f1 : My — My and f; : M3 — Mj3 are injective, then so
is f1: My — My and we obtain a short exact sequence

0— Ml/flMl — Mg/flMg — Mg/flMg —0
The lemma follows from this and induction on r. Some details omitted. O

Lemma 68.9. Let R be a ring. Let M be an R-module. Let f1,...,fr € R and
€1,...,er > 0 integers. Then f1,..., fr is an M-reqular sequence if and only if

e fE ds an M -regular sequence.

Proof. We will prove this by induction on r. If r = 1 this follows from the following
two easy facts: (a) a power of a nonzerodivisor on M is a nonzerodivisor on M and
(b) a divisor of a nonzerodivisor on M is a nonzerodivisor on M. If r > 1, then by
induction applied to M/ fi M we have that f1, fo,..., f. is an M-regular sequence
if and only if fi, f52,..., f¢ is an M-regular sequence. Thus it suffices to show,
given e > 0, that f7, fa,..., fr is an M-regular sequence if and only if fi,..., f. is
an M-regular sequence. We will prove this by induction on e. The case ¢ = 1 is
trivial. Since f; is a nonzerodivisor under both assumptions (by the case r = 1) we
have a short exact sequence

e—1
0= M/fM Dy M/fEM — M/FEIM = 0

Suppose that fi, fo,..., f, is an M-regular sequence. Then by induction the ele-
ments fo, ..., f, are M/fiM and M/f{™! M-regular sequences. By Lemma @
foyoooy fris M/ ffM-regular. Hence ff, fo,..., fr is M-regular. Conversely, sup-
pose that f¢, fo,..., fr is an M-regular sequence. Then fo : M/ffM — M/ ffM
is injective, hence fo : M/fiM — M/fiM is injective, hence by induction(!)
fo: M/fETIM — M/ f¢' M is injective, hence

0= M/ (fr. f2)M 25 MY(FE, f2)M = M/ f2)M =0

is a short exact sequence by Lemma [} This proves the converse for r = 2.
If » > 2, then we have f3 : M/(f¢, fo)M — M/(ff, f2)M is injective, hence
f3: M/(f1, f2)M — M/(f1, fo)M is injective, and so on. Some details omitted. O

Lemma 68.10. Let R be a ring. Let f1,...,fr € R which do not generate the
unit ideal. The following are equivalent:

(1) any permutation of f1,..., fr is a reqular sequence,
(2) any subsequence of fi,..., fr (in the given order) is a regular sequence, and
(3) fiz1,..., fray is a regular sequence in the polynomial ring R[xy,. .., ;).

Proof. It is clear that (1) implies (2). We prove (2) implies (1) by induction on r.
The case r = 1 is trivial. The case r = 2 says that if a,b € R are a regular sequence
and b is a nonzerodivisor, then b, a is a regular sequence. This is clear because the
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kernel of a : R/(b) — R/(b) is isomorphic to the kernel of b : R/(a) — R/(a) if both
a and b are nonzerodivisors. The case r > 2. Assume (2) holds and say we want

to prove f,(1), ..., fo(r) is a regular sequence for some permutation o. We already
know that fo(1),..., fo(r—1) is a regular sequence by induction. Hence it suffices to
show that fs; where s = o(r) is a nonzerodivisor modulo fi, ..., foroii fr Ifs=r

we are done. If s < r, then note that f; and f,. are both nonzerodivisors in the ring
R/(f1,..s fs ..., fr—1) (by induction hypothesis again). Since we know fs, f, is a
regular sequence in that ring we conclude by the case of sequence of length 2 that
frs fs 18 too.

Note that R[z1,...,z.]/(fiz1,..., fiz;) as an R-module is a direct sum of the
modules

R/Ig -t ...z
indexed by multi-indices E = (eq, ..., e,) where I is the ideal generated by f; for
1 <j <iwithe; > 0. Hence f;112; is a nonzerodivisor on this if and only if f;;; is
a nonzerodivisor on R/Ig for all E. Taking F with all positive entries, we see that
fit1 is a nonzerodivisor on R/(f1,..., f;). Thus (3) implies (2). Conversely, if (2)
holds, then any subsequence of fi,..., fi, fi+1 is a regular sequence in particular
fit1 is a nonzerodivisor on all R/Ig. In this way we see that (2) implies (3). O

69. Quasi-regular sequences

We introduce the notion of quasi-regular sequence which is slightly weaker than

that of a regular sequence and easier to use. Let R be a ring and let fi,..., f. € R.
Set J = (f1,..., fc). Let M be an R-module. Then there is a canonical map

n n+1
(69.0.1) M/IM ®g/; R/ J[X1,..., Xc] — @nzo JUM )T M

of graded R/J[X1,..., X ]-modules defined by the rule
m X1€1 - Xcec — ffl . fcecm mod Jel+”'+60+1M.

Note that (69.0.1) is always surjective.

Definition 69.1. Let R be aring. Let M be an R-module. A sequence of elements
fi,--., fc of R is called M -quasi-reqular if (69.0.1) is an isomorphism. If M = R,
we call fi1,..., f. simply a quasi-reqular sequence.

So if f1,..., fc is a quasi-regular sequence, then
— n n+1
R)J[Xy,...,X.] = @nzo J)J

where J = (f1, ..., fc). Itis clear that being a quasi-regular sequence is independent
of the order of f1,..., fe.

Lemma 69.2. Let R be a ring.

(1) A regular sequence fi,..., f. of R is a quasi-regular sequence.
(2) Suppose that M is an R-module and that f1,..., fc is an M-regular se-
quence. Then f1,..., fe is an M -quasi-reqular sequence.

Proof. Set J = (f1,..., f.). We prove the first assertion by induction on c¢. We
have to show that given any relation Zm:n arf! € J" with a; € R we actually

have a; € J for all multi-indices I. Since any element of J"*! is of the form
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Zm:n by f1 with b; € J we may assume, after replacing a; by a; — by, the relation
reads Z|I|=n arff = 0. We can rewrite this as

X (Zm—ne‘”’»@ﬂ) fe=0

Here and below the “primed” multi-indices I’ are required to be of the form I’ =
(i1,...,ic—1,0). We will show by descending induction on I € {0,...,n} that if we

have a relation
l

Ze:O (Z[’|—n—e aI'ﬁfﬂ) fe=0

thenap . € J forall I’ e. Namely, set J' = (f1,..., fe—1). Observe that Do =ni ap f
is mapped into (J')"~'*! by f!. By induction hypothesis (for the induction on c)

we see that féapyl € J'. Because f. is not a zerodivisor on R/J’ (as f1,...,fcisa
regular sequence) we conclude that ay/; € J'. This allows us to rewrite the term
O ap 1 f7)fL in the form (i1 )=n—141 febrra_1fT)fI=1. This gives a new
relation of the form

’ l_2 !
(ZI’—n—l+1(a1/’ll + febra—) f! ) o+ Ze:O (Z|I’|—n—e ap e f’ ) fe=0

Now by the induction hypothesis (on ! this time) we see that all a1+ febr -1 €
J and all ayr . € J for e <1 —2. This, combined with a; ; € J' C J seen above,
finishes the proof of the induction step.

The second assertion means that given any formal expression F' = ZI I|=n mrX7,

my € M with Y. mrff € J*1M, then all the coefficients m; are in J. This is
proved in exactly the same way as we prove the corresponding result for the first
assertion above. O

065L, Lemma 69.3. Let R — R’ be a flat ring map. Let M be an R-module. Sup-
pose that f1,...,fr € R form an M-quasi-regular sequence. Then the images of
fi,--os fr in R form a M Qg R'-quasi-regular sequence.

Proof. Set J = (f1,...,fr), J' = JR and M’ = M ®r R’. We have to show
the canonical map p: R'/J'[X1,... X, | @pr gy M' /T M — @(J')"M'/(J" )" M’
is an isomorphism. Because R — R’ is flat the sequences 0 — J"M — M and
0— J'PIIM — J°M — J"M/J"™'M — 0 remain exact on tensoring with R’.
This first implies that J"M @ R’ = (J')"M’ and then that (J")"M'/(J)" 1M’ =
J'M/J" M @p R'. Thus p is the tensor product of , which is an isomor-
phism by assumption, with idg, and we conclude. O

061Q Lemma 69.4. Let R be a Noetherian ring. Let M be a finite R-module. Let p be
a prime. Let x1,...,z. be a sequence in R whose image in Ry, forms an M,-quasi-
reqular sequence. Then there exists a g € R, g € p such that the image of x1,. .., x,
in Ry forms an Mg-quasi-regular sequence.

Proof. Consider the kernel K of the map (69.0.1). As M/JM®pg,;R/J[Xy,. .., X,]
is a finite R/J[X7,..., X ]-module and as R/J[X1,...,X.] is Noetherian, we see
that K is also a finite R/J[X1,..., X ]-module. Pick homogeneous generators
ki,...,k € K. By assumption for each i = 1,...,¢ there exists a g; € R, g; € p
such that g;k; = 0. Hence g = ¢; ... g works. [
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Lemma 69.5. Let R be a ring. Let M be an R-module. Let fy,....f. € R

be an M -quasi-reqular sequence. For any i the sequence ?Hl,...,fc of R =
R/(f1,...,fi) is an M = M/(f1,..., fi)M-quasi-reqular sequence.

Proof. It suffices to prove this for i = 1. Set J = (f5,..., f.) C R. Then
TN )TN = (JUM 4+ fLM)/(JTHM 4 f M)
= J"M/(J" M +J"M N fiM).

Thus, in order to prove the lemma it suffices to show that J"t'M +J"M N f1M =
J LM+ f1J" 7t M because that will show that @, -, 7”M/7n+1ﬁ is the quotient
of @,,50J"M/J "t = M/JM[Xy,...,X.] by X;. Actually, we have J"MNf; M =
f1J"IM. Namely, if m & J*2M, then fim & J"M because @ J"M/J" 1M is
the polynomial algebra M/J[X1,...,X.] by assumption. O

Lemma 69.6. Let (R,m) be a local Noetherian ring. Let M be a nonzero finite
R-module. Let fy,...,f. € m be an M-quasi-regular sequence. Then f1,..., fc is
an M -reqular sequence.

Proof. Set J = (f1,..., fc). Let us show that f; is a nonzerodivisor on M. Suppose
x € M is not zero. By Krull’s intersection theorem there exists an integer r such
that « € J'M but z € J"t'M, see Lemma Then fiz € J™F'M is an
element whose class in J""1M/J " 2M is nonzero by the assumed structure of
@ J"M/J M. Whence fiz # 0.

Now we can finish the proof by induction on ¢ using Lemma [69.5 (]

Remark 69.7 (Other types of regular sequences). In the paper [Kab71] the author
discusses two more regularity conditions for sequences x1,...,x, of elements of a
ring R. Namely, we say the sequence is Koszul-reqular if H;(Ko(R,xz,)) = 0 for
i > 1 where Ko (R, z,) is the Koszul complex. The sequence is called H;-regular
if H1(Ko4(R,xs)) = 0. One has the implications regular = Koszul-regular = H;-
regular = quasi-regular. By examples the author shows that these implications
cannot be reversed in general even if R is a (non-Noetherian) local ring and the
sequence generates the maximal ideal of R. We introduce these notions in more
detail in More on Algebra, Section

Remark| 69.8. Let k be a field. Consider the ring

A= k[xvyawwz()leaZQa o ]/(yQZO — Wx, 20 —Yz1,21 —Yz2,.. )

In this ring « is a nonzerodivisor and the image of y in A/x A gives a quasi-regular
sequence. But it is not true that x,y is a quasi-regular sequence in A because
(r,y)/(z,y)? isn’t free of rank two over A/(z,y) due to the fact that wx = 0 in
(z,y)/(z,y)? but w isn’t zero in A/(z,y). Hence the analogue of Lemma does
not hold for quasi-regular sequences.

Lemmal 69.9. Let R be a ring. Let J = (fi,..., fr) be an ideal of R. Let M
be an R-module. Set R = R/(\,~0J", M = M/(\,>0J"M, and denote f; the
image of f; in R. Then fi,..., r_ 1s M—quasz’—regular_if and only if fi,...,f, is
M -quasi-regular.

Proof. This is true because J"M/J" 1M = jnﬂ/jm_lﬂ. O
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70. Blow up algebras
In this section we make some elementary observations about blowing up.

Definition 70.1. Let R be a ring. Let I C R be an ideal.

(1) The blowup algebra, or the Rees algebra, associated to the pair (R, I) is the
graded R-algebra

Bl,(R):@n>OI":R@I@12@...

where the summand I"™ is placed in degree n.

(2) Let a € I be an element. Denote a!) the element a seen as an element of
degree 1 in the Rees algebra. Then the affine blowup algebra R[é] is the
algebra (Bl;(R)) 40y constructed in Section

In other words, an element of R[é] is represented by an expression of the form x/a™
with € I". Two representatives z/a™ and y/a™ define the same element if and
only if a*(a™z — a™y) = 0 for some k > 0.

Lemma 70.2. Let R be a ring, I C R an ideal, and a € I. Let R' = R[%] be the
affine blowup algebra. Then

(1) the image of a in R’ is a nonzerodivisor,

(2) IR =aR’, and

(3) (R)a = Ra.

Proof. Immediate from the description of R[] above. O

Lemmal 70.3. Let R — S be a ring map. Let I C R be an ideal and a € I. Set
J =18 and letb € J be the image of a. Then S[%] is the quotient of S @r R[L] by
the ideal of elements annihilated by some power of b.

Proof. Let S’ be the quotient of S Qg R[é] by its b-power torsion elements. The
ring map
S ®r R[é] — S[%]

is surjective and annihilates a-power torsion as b is a nonzerodivisor in S [%] Hence
we obtain a surjective map S’ — S[4]. To see that the kernel is trivial, we construct
an inverse map. Namely, let z = y/b™ be an element of S[%], ie, y e J". Write
y=>. x;s; with z; € I" and s; € S. We map z to the class of > s; ® x;/a™ in 5.
This is well defined because an element of the kernel of the map S ®g I™ — J" is
annihilated by a™, hence maps to zero in S’. ([l

Example 70.4. Let R be a ring. Let P = RJ[ty,...,t¢,] be the polynomial al-
gebra. Let I = (t1,...,t,) C P. With notation as in Definition there is an
isomorphism

P[Tl, A 7Tn]/(tlTJ — t]T'l) — BII(P)

)

sending T; to tgl . We leave it to the reader to show that this map is well defined.

Since [ is generated by t1,...,t, we see that our map is surjective. To see that our
map is injective one has to show: for each e > 1 the P-module I¢ is generated by
the monomials t¥ = t{* ...z for multiindices E = (ey,...,e,) of degree |E| = ¢

subject only to the relations t;t¥ = t;t¥ when |E| = |E'| = e and e, + dai =
el +0aj, a=1,...,n (Kronecker delta). We omit the details.
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Example 70.5. Let R be aring. Let P = R[ty,...,t,] be the polynomial algebra.
Let I = (t1,...,t,) C P. Let a = t;. With notation as in Definition there is
an isomorphism

P[J?Q,...,In]/(tlxg—tg,...,tll‘n—tn) —)P[é] ZP[%]

sending x; to t;/t;. We leave it to the reader to show that this map is well defined.
Since I is generated by t1,...,t, we see that our map is surjective. To see that our
map is injective, the reader can argue that the source and target of our map are ;-
torsion free and that the map is an isomorphism after inverting ¢1, see Lemma [70.2

Alternatively, the reader can use the description of the Rees algebra in Example
[70.41 We omit the details.

Lemma 70.6. Let R be a ring. Let I = (aq,...,ay,) be an ideal of R. Let a = a;.
Then there is a surjection

Rlza, ..., z,)/(axe — asg, ..., ax, — ay,) — R[é]
whose kernel is the a-power torsion in the source.

Proof. Consider the ring map P = Z[ty,...,t,] — R sending t; to a;. Set J =
(t1,...,tn). By Example we have P[%] = Plzg,...,xn]/(t1xe —ta, ..., t12y —
tn). Apply Lemma to the map P — A to conclude. O

Lemma 70.7. Let R be a ring, I C R an ideal, and a € I. Set R = R[L].
If f € R is such that V(f) = V(I), then f maps to a nonzerodivisor in R and
' = R, = R,.
f a a

Proof. We will use the results of Lemma [[0.2] without further mention. The as-
sumption V(f) = V(I) implies V(fR') = V(IR') = V(aR'). Hence a™ = fb and
/™ = ac for some b,c € R'. The lemma follows. O

Lemmal 70.8. Let R be a ring, I C R an ideal, a € I, and f € R. Set R' = R[é]
and R" = R[%] Then there is a surjective R-algebra map R’ — R whose kernel
is the set of f-power torsion elements of R'.

Proof. The map is given by sending x/a™ for z € I" to f"x/(fa)™. Tt is straight-
forward to check this map is well defined and surjective. Since af is a nonzero
divisor in R” (Lemma we see that the set of f-power torsion elements are
mapped to zero. Conversely, if x € R’ and f™x # 0 for all n > 0, then (af)"z # 0
for all n as a is a nonzero divisor in R’. It follows that the image of z in R” is not
zero by the description of R” following Definition |

Lemma 70.9. If R is reduced then every (affine) blowup algebra of R is reduced.

Proof. Let I C R be an ideal and a € I. Suppose z/a™ with « € I"™ is a nilpotent
element of R[Z]. Then (z/a™)™ = 0. Hence ™2™ = 0 in R for some N > 0.
After increasing N if necessary we may assume N = me for some e > 0. Then
(ax)™ = 0 and since R is reduced we find a°x = 0. This means that z/a™ = 0 in
R[], O

Lemma 70.10. Let R be a domain, I C R an ideal, and a € I a nonzero element.
Then the affine blowup algebra R[é] is a domain.


https://stacks.math.columbia.edu/tag/0G8R
https://stacks.math.columbia.edu/tag/0G8S
https://stacks.math.columbia.edu/tag/080U
https://stacks.math.columbia.edu/tag/0BBI
https://stacks.math.columbia.edu/tag/052S
https://stacks.math.columbia.edu/tag/052R

COMMUTATIVE ALGEBRA 166

Proof. Suppose z/a", y/a™ with € I", y € I"™ are elements of R[£] whose

product is zero. Then aVzy = 0 in R. Since R is a domain we conclude that either
z=0ory=0. (Il

052T |Lemma 70.11. Let R be a ring. Let I C R be an ideal. Let a € I. If a is
not contained in any minimal prime of R, then Spec(R[%]) — Spec(R) has dense
image.

Proof. If a*2 = 0 for € R, then z is contained in all the minimal primes of R
and hence nilpotent, see Lemma Thus the kernel of R — R[é] consists of
nilpotent elements. Hence the result follows from Lemma [30.6 (]

052M Lemma|70.12. Let (R, m) be a local domain with fraction field K. Let RC A C K
be a valuation ring which dominates R. Then

A = colim R[%]

is a directed colimit of affine blowups R — R[é] with the following properties

(1) aeICm,
(2) I is finitely generated, and
(3) the fibre ring of R — R[L] at m is not zero.

Proof. Any blowup algebra R[1] is a domain contained in K see Lemma [70.10
The lemma simply says that A is the directed union of the ones where a € I have
properties (1), (2), (3). If R[] C A and R[Z] C A, then we have

R[;JUR[F]C R[ZF]C A

The first inclusion because xz/a™ = b"™x/(ab)™ and the second one because if z €
(I7)", then z = Y z;y; with z; € I"™ and y; € J™ and hence z/(ab)™ = > (z;/a™)(y; /b™)
is contained in A.

Consider a finite subset E C A. Say E = {e1,...,e,}. Choose a nonzero a € R
such that we can write e; = f;/a for all i = 1,...,n. Set I = (f1,..., fn,a).
We claim that R[Z] C A. This is clear as an element of R[£] can be represented
as a polynomial in the elements e;. The lemma follows immediately from this
observation. (]

71. Ext groups

00LO In this section we do a tiny bit of homological algebra, in order to establish some
fundamental properties of depth over Noetherian local rings.

OOLP Lemma 71.1. Let R be a ring. Let M be an R-module.
(1) There exists an exact complex
—)FQ—)F1—>F0—>M—>O

with F; free R-modules.
(2) If R is Noetherian and M finite over R, then we can choose the complex
such that F; is finite free. In other words, we can find an exact complex

... — Ry ROM_y ROMO _y Ar (),
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Proof. Let us explain only the Noetherian case. As a first step choose a surjection
R™ — M. Then having constructed an exact complex of length e we simply
choose a surjection R™+' — Ker(R" — R™ 1) which is possible because R is
Noetherian. (]

Definition 71.2. Let R be a ring. Let M be an R-module.
(1) A (left) resolution Fg — M of M is an exact complex

.o Fy > F —Fy—>M—0

of R-modules.

(2) A resolution of M by free R-modules is a resolution Fy — M where each
F; is a free R-module.

(3) A resolution of M by finite free R-modules is a resolution Fy — M where
each Fj is a finite free R-module.

We often use the notation F, to denote a complex of R-modules
oo F = F— .

In this case we often use d; or dp; to denote the map F; — F;_;. In this section we
are always going to assume that Fj is the last nonzero term in the complex. The #th
homology group of the complex F, is the group H; = Ker(dp;)/Im(dp+1). A map
of complexes o : Fy — G, is given by maps «; : F; — G; such that o1 odp; =
dg,i—1 © a;. Such a map induces a map on homology H;(a) : H;(F,) — H;(G.). If
a, B : Fg = G4 are maps of complexes, then a homotopy between a and S is given
by a collection of maps h; : F; = G;41 such that a; — 8; = dgiy10h; +hi—10dp;.
Two maps «a, 8 : Fe — G, are said to be homotopic if a homotopy between « and
[ exists.
We will use a very similar notation regarding complexes of the form F'* which look
like ‘

PR L RN - O
There are maps of complexes, homotopies, etc. In this case we set H'(F*®) =
Ker(d?)/Im(d*~!) and we call it the ith cohomology group.

Lemmal 71.3. Any two homotopic maps of complexes induce the same maps on
(co)homology groups.

Proof. Omitted. |

Lemma 71.4. Let R be a ring. Let M — N be a map of R-modules. Let Ng — N
be an arbitrary resolution. Let

. By > Fg—> M

be a complex of R-modules where each F; is a free R-module. Then
(1) there exists a map of complexes Fy — N, such that

F0*>M
NOHN

is commutative, and
(2) any two maps «, B : Fe — N, as in (1) are homotopic.
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Proof. Proof of (1). Because Fy is free we can find a map Fy — Ny lifting the
map Fy — M — N. We obtain an induced map F; — Fy — Ny which ends up in
the image of N1 — Ny. Since F} is free we may lift this to a map £} — N;. This in
turn induces a map Fy — F; — N7 which maps to zero into Ny. Since N, is exact
we see that the image of this map is contained in the image of N — N;. Hence
we may lift to get a map F5 — Ns. Repeat.

Proof of (2). To show that «, are homotopic it suffices to show the difference
v = a — 8 is homotopic to zero. Note that the image of vy : Fy — Ny is contained
in the image of N7 — Ny. Hence we may lift vy to a map hg : Fy — N;. Consider
the map v; = 71 — ho o dp,1. By our choice of hy we see that the image of v/ is
contained in the kernel of Ny — Nj. Since N, is exact we may lift 7] to a map
hi: F1 — Ns. At this point we have y; = hg odp,;; + dn2 © h1. Repeat. O

At this point we are ready to define the groups Ext% (M, N). Namely, choose a res-
olution F, of M by free R-modules, see Lemma Consider the (cohomological)
complex

Homp(F,, N) : Hompg(Fy, N) - Hompg(Fy, N) - Homp(Fp, N) — ...

We define Ext%(M N ) for i > 0 to be the ith cohomology group of this Comple
For i < 0 we set Exty (M, N) = 0. Before we continue we point out that

Ext% (M, N) = Ker(Hompg(Fy, N) — Homp(F;, N)) = Homp(M, N)

because we can apply part (1) of Lemma to the exact sequence Fy; — Fy —
M — 0. The following lemma explains in what sense this is well defined.

Lemma 71.5. Let R be a ring. Let My, My, N be R-modules. Suppose that F,
is a free resolution of the module My, and Go is a free resolution of the module
M. Let ¢ : M1 — My be a module map. Let o : Fg — G4 be a map of complezes
inducing ¢ on My = Coker(dp1) — My = Coker(dg,1), see Lemma . Then the
induced maps

H'(a) : H(Homg(F,, N)) — H'(Hompg(G,, N))

are independent of the choice of a. If ¢ is an isomorphism, so are all the maps
Hi(a). If My = My, Fy = G,, and ¢ is the identity, so are all the maps H;().

Proof. Another map 3 : Fy — (G4 inducing ¢ is homotopic to o by Lemma [71.4]
Hence the maps Homp(F,, N) — Hompg(G,., N) are homotopic. Hence the inde-
pendence result follows from Lemma [71.3]

Suppose that ¢ is an isomorphism. Let ¢ : My — M; be an inverse. Choose
B : Ge — Fo be a map inducing ¢ : My = Coker(dg,1) — M; = Coker(dp1), see
Lemma [71.4} OK, and now consider the map H(a) o H'(8) = H'(a o 8). By the
above the map H(a o ) is the same as the map H'(idg,) = id. Similarly for the
composition H*(3) o H'(«). Hence H'(a) and H?(3) are inverses of each other. [

Lemma 71.6. Let R be a ring. Let M be an R-module. Let 0 — N’ — N —
N" — 0 be a short exact sequence. Then we get a long exact sequence

0 — Homp(M,N’) - Homg(M, N) — Hompg(M, N")
— Exth(M,N') = Extp(M,N) = Exth(M,N") — ...

"At this point it would perhaps be more appropriate to say “an” in stead of “the” Ext-group.
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Proof. Pick a free resolution Fy — M. Since each of the F; are free we see that
we get a short exact sequence of complexes

0 — Hompg(Fs, N') — Hompg(F,s, N) — Hompg(Fs, N") = 0

Thus we get the long exact sequence from the snake lemma applied to this. O
Lemmal 71.7. Let R be a ring. Let N be an R-module. Let 0 — M' — M —
M" — 0 be a short exact sequence. Then we get a long ezact sequence
0 — Homgr(M" ,N) — Homg(M, N) — Homg(M', N)
— Extp(M",N) = Extp(M,N) = Extp(M/,N) — ...
Proof. Pick sets of generators {m/, }; ;- and {mf,};,»c;» of M" and M". For each
i"” € I" choose a lift m}, € M of the element m}, € M". Set F' = @, R,
F'" =@, c;n Rand F = F' @ F”. Mapping the generators of these free modules
to the corresponding chosen generators gives surjective R-module maps F’ — M’,
F" — M", and F — M. We obtain a map of short exact sequences
0 - M - M —- M' — 0
T T T
0O - FF - F —- F' — 0
By the snake lemma we see that the sequence of kernels 0 -+ K/ — K — K" — 0 is
short exact sequence of R-modules. Hence we can continue this process indefinitely.
In other words we obtain a short exact sequence of resolutions fitting into the
diagram
0O - M - M —- M — 0
T T T
0 - F, - F. —- F! — 0
Because each of the sequences 0 — F,, — F,, — F/ — 0 is split exact (by construc-
tion) we obtain a short exact sequence of complexes
0 — Hompg(F.),N) — Hompg(F,, N) — Homg(F,,N) — 0
by applying the Hompg(—, N) functor. Thus we get the long exact sequence from
the snake lemma applied to this. ([l
Lemmal 71.8. Let R be a ring. Let M, N be R-modules. Any x € R such that
either tN = 0, or M = 0 annihilates each of the modules Ext'sy (M, N).
Proof. Pick a free resolution F, of M. Since Ext% (M, N) is defined as the cohomol-
ogy of the complex Hompg(F,, N) the lemma is clear when N = 0. If zM = 0, then
we see that multiplication by x on F, lifts the zero map on M. Hence by Lemma
[71.5] we see that it induces the same map on Ext groups as the zero map. O
Lemmal 71.9. Let R be a Noetherian ring. Let M, N be finite R-modules. Then

ExtE(M, N) is a finite R-module for all i.

Proof. This holds because Extg(M ,N) is computed as the cohomology groups of
a complex Homp(F,, N) with each F), a finite free R-module, see Lemma O
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72. Depth
Here is our definition.

Definition 72.1. Let R be aring, and I C R an ideal. Let M be a finite R-module.
The I-depth of M, denoted depth; (M), is defined as follows:
(1) if IM # M, then depth;(M) is the supremum in {0,1,2,...,00} of the
lengths of M-regular sequences in I,
(2) if IM = M we set depth; (M) = .
If (R, m) is local we call depth,, (M) simply the depth of M.

Explanation. By Definition [68.1] the empty sequence is not a regular sequence on
the zero module, but for practical purposes it turns out to be convenient to set the
depth of the 0 module equal to +00. Note that if I = R, then depth;(M) = oo for
all finite R-modules M. If I is contained in the Jacobson radical of R (e.g., if R is
local and I C mg), then M # 0 = IM # M by Nakayama’s lemma. A module M
has I-depth 0 if and only if M is nonzero and I does not contain a nonzerodivisor
on M.

Example [68.2] shows depth does not behave well even if the ring is Noetherian,
and Example [68.3] shows that it does not behave well if the ring is local but non-
Noetherian. We will see depth behaves well if the ring is local Noetherian.

Lemmal 72.2. Let R be a ring, I C R an ideal, and M a finite R-module. Then
depth; (M) is equal to the supremum of the lengths of sequences f1,..., fr € I such
that f; is a nonzerodivisor on M/(f1,..., fi—1)M.

Proof. Suppose that IM = M. Then Lemma [20.1|shows there exists an f € I such
that f : M — M is idy;. Hence f,0,0,0,... is an infinite sequence of successive
nonzerodivisors and we see agreement holds in this case. If IM # M, then we see
that a sequence as in the lemma is an M-regular sequence and we conclude that
agreement holds as well. a

Lemma 72.3. Let (R,m) be a Noetherian local ring. Let M be a nonzero finite
R-module. Then dim(Supp(M)) > depth(M).

Proof. The proof is by induction on dim(Supp(M)). If dim(Supp(M)) = 0, then
Supp(M) = {m}, whence Ass(M) = {m} (by Lemmas and [63.7), and hence
the depth of M is zero for example by Lemma [63.18] For the induction step we
assume dim(Supp(M)) > 0. Let f1,..., fa be a sequence of elements of m such that
fi is a nonzerodivisor on M/(f1,..., fi—1)M. According to Lemma it suffices
to prove dim(Supp(M)) > d. We may assume d > 0 otherwise the lemma holds.
By Lemma [63.10] we have dim(Supp(M/ f1 M)) = dim(Supp(M)) — 1. By induction
we conclude dim(Supp(M/fiM)) > d —1 as desired. O

Lemmal 72.4. Let R be a Noetherian ring, I C R an ideal, and M a finite nonzero
R-module such that IM # M. Then depth;(M) < oo.

Proof. Since M/IM is nonzero we can choose p € Supp(M/IM) by Lemma [40.2]
Then (M/IM), # 0 which implies I C p and moreover implies M, # IM,
as localization is exact. Let fi,...,f. € I be an M-regular sequence. Then
My/(f1,..., fr)M, is nonzero as (fi,...,fr) C I. As localization is flat we see
that the images of fi,..., f, form a M,-regular sequence in I,. Since this works for
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every M-regular sequence in I we conclude that depth;(M) < depth; (M;). The
latter is < depth(M,) which is < co by Lemma O

Lemma 72.5. Let R be a Noetherian local ring with mazimal ideal m. Let M be
a nonzero finite R-module. Then depth(M) is equal to the smallest integer i such
that Ext’z(R/m, M) is nonzero.

Proof. Let §(M) denote the depth of M and let i(M) denote the smallest integer
i such that Ext’z(R/m, M) is nonzero. We will see in a moment that i(M) < oo.
By Lemma we have 0(M) = 0 if and only if i(M) = 0, because m € Ass(M)
exactly means that i(M) = 0. Hence if (M) or i(M) is > 0, then we may choose
x € m such that (a) z is a nonzerodivisor on M, and (b) depth(M/zM) = 6(M) —
1. Consider the long exact sequence of Ext-groups associated to the short exact
sequence 0 — M — M — M/xM — 0 by Lemma [71.6}

0 — Homp(k, M) — Hompg(k, M) — Homp(k, M/xM)
— Extp(k, M) = Exth(k, M) — Exth (s, M/zM) — ...

Since # € m all the maps Exth(k, M) — Ext% (s, M) are zero, see Lemma
Thus it is clear that (M /xM) = i(M)—1. Induction on §(M) finishes the proof. O

Lemmal 72.6. Let R be a local Noetherian ring. Let 0 - N’ — N — N"” — 0 be
a short exact sequence of nonzero finite R-modules.

(1) depth(N) > min{depth(N"), depth(N")}

(2) depth(N'") > min{depth(N), depth(N") — 1}

(3) depth(N') > min{depth(N), depth(N") + 1}

Proof. Use the characterization of depth using the Ext groups EXti(FL, N), see
Lemma and use the long exact cohomology sequence

0 — Hompg(k, N') = Hompg(x, N) = Hompg(x, N")
— Exth(k, N') = BExtk(k, N) = Exth(k, N") — ...

from Lemma [71.6l O

Lemmal 72.7. Let R be a local Noetherian ring and M a nonzero finite R-module.
(1) If x € m is a nonzerodivisor on M, then depth(M/xM) = depth(M) — 1.
(2) Any M-regular sequence x1,...,x, can be extended to an M-regular se-
quence of length depth(M).

Proof. Part (2) is a formal consequence of part (1). Let # € R be as in (1). By
the short exact sequence 0 = M — M — M/xzM — 0 and Lemmawe see that
the depth drops by at most 1. On the other hand, if z1,...,z, € m is a regular
sequence for M/xM, then x,x1,...,z, is a regular sequence for M. Hence we see
that the depth drops by at least 1. (I

Lemma 72.8. Let (R,m) be a local Noetherian ring and M a finite R-module.
Let x € m, p € Ass(M), and q minimal over p + (x). Then q € Ass(M/x™"M) for
somen > 1.

Proof. Pick a submodule N € M with N &£ R/p. By the Artin-Rees lemma
(Lemma we can pick n > 0 such that N Na"M C N. Let N C M/x"M be
the image of N - M — M /2" M. By Lemma it suffices to show q € Ass(N).
By our choice of n there is a surjection N — N/xN = R/p + (x) and hence q is
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in the support of N. Since N is annihilated by z" and p we see that g is minimal
among the primes in the support of N. Thus ¢ is an associated prime of N by
Lemma [63.8 O

Lemma 72.9. Let (R,m) be a local Noetherian ring and M a finite R-module.
For p € Ass(M) we have dim(R/p) > depth(M).

Proof. If m € Ass(M) then there is a nonzero element z € M which is annihilated
by all elements of m. Thus depth(M) = 0. In particular the lemma holds in this
case.

If depth(M) = 1, then by the first paragraph we find that m ¢ Ass(M). Hence
dim(R/p) > 1 for all p € Ass(M) and the lemma is true in this case as well.

We will prove the lemma in general by induction on depth(M ) which we may and do
assume to be > 1. Pick x € m which is a nonzerodivisor on M. Note z ¢ p (Lemma
63.9). By Lemma [60.13| we have dim(R/p+ (z)) = dim(R/p) — 1. Thus there exists
a prime g minimal over p + () with dim(R/q) = dim(R/p) — 1 (small argument
omitted; hint: the dimension of a Noetherian local ring A is the maximum of the
dimensions of A/t taken over the minimal primes t of A). Pick n as in Lemma
so that g is an associated prime of M/a2"M. We may apply induction hypothesis
to M/x™M and q because depth(M /2" M) = depth(M) — 1 by Lemma We
find dim(R/q) > depth(M/z™ M) and we win. O

Lemmal 72.10. Let R be a local Noetherian ring and M a finite R-module. For
a prime ideal p C R we have depth(M,) + dim(R/p) > depth(M).

Proof. If M, = 0, then depth(M,) = oo and the lemma holds. If depth(M) <
dim(R/p), then the lemma is true. If depth(M) > dim(R/p), then p is not contained
in any associated prime q of M by Lemma [72.9] Hence we can find an = € p not
contained in any associated prime of M by Lemma [I5.2) and Lemma [63.5] Then z
is a nonzerodivisor on M, see Lemma [63.9] Hence depth(M/zM) = depth(M) — 1
and depth(M,/xM,) = depth(M,) — 1 provided M, is nonzero, see Lemma
Thus we conclude by induction on depth(M). O

Lemma 72.11. Let (R,m) be a Noetherian local ring. Let R — S be a finite ring
map. Let my,...,m, be the maximal ideals of S. Let N be a finite S-module. Then

min;—y ., depth(Nn,) = depth, (N)
Proof. By Lemmas [36.20} [36.22] and Lemma [36.21] the maximal ideals of S are

exactly the primes of S lying over m and there are finitely many of them. Hence
the statement of the lemma makes sense. We will prove the lemma by induction on
k = min;—q _, depth(Ny,). If £ =0, then depth(Ny,) = 0 for some i. By Lemma

this means m; Sy, is an associated prime of Ny, and hence m; is an associated
prime of N (Lemma . By Lemma we see that m is an associated prime
of N as an R-module. Whence depth, (N) = 0. This proves the base case. If
k > 0, then we see that m; & Assg(N). Hence m ¢ Assg(N), again by Lemma
[63:13] Thus we can find f € m which is not a zerodivisor on N, see Lemma [63.18]
By Lemma all the depths drop exactly by 1 when passing from N to N/fN
and the induction hypothesis does the rest. [


https://stacks.math.columbia.edu/tag/0BK4
https://stacks.math.columbia.edu/tag/0FCC
https://stacks.math.columbia.edu/tag/0AUK

087M

087N

02HN
02HO

COMMUTATIVE ALGEBRA 173

73. Functorialities for Ext

In this section we briefly discuss the functoriality of Ext with respect to change of
ring, etc. Here is a list of items to work out.

(1) Given R — R/, an R-module M and an R’-module N’ the R-module
Ext®(M, N’) has a natural R'-module structure. Moreover, there is a
canonical R'-linear map Exthy (M ®g R', N') — Exty (M, N').

(2) Given R — R’ and R-modules M, N there is a natural R-module map
Ext, (M, N) — Extiy(M, N ®p R').

Lemmal 73.1. Given a flat ring map R — R’, an R-module M, and an R'-module
N’ the natural map
Extl (M ®@g R',N') — Exty(M,N')
is an isomorphism for i > 0.
Proof. Choose a free resolution F, of M. Since R — R’ is flat we see that F, @ R’
is a free resolution of M ®r R’ over R'. The statement is that the map
Homp/ (Fs ®g R, N') — Hompg(F,, N')

induces an isomorphism on homology groups, which is true because it is an isomor-
phism of complexes by Lemma [14.3 (]

74. An application of Ext groups
Here it is.

Lemma 74.1. Let R be a Noetherian ring. Let I C R be an ideal contained in
the Jacobson radical of R. Let N — M be a homomorphism of finite R-modules.
Suppose that there exists arbitrarily large n such that N/I"N — M/I™"M is a split
injection. Then N — M is a split injection.

Proof. Assume ¢ : N — M satisfies the assumptions of the lemma. Note that this
implies that Ker(¢) C I"N for arbitrarily large n. Hence by Lemma we see
that o is injection. Let @ = M/N so that we have a short exact sequence

0—->N-—->M-—=>Q—0.
Let
BRE5 RS F-5Q—0
be a finite free resolution of Q). We can choose a map « : Fy — M lifting the map
Fy — Q. This induces a map 8 : F; — N such that § ody = 0. The extension
above is split if and only if there exists a map ~ : Fy — N such that 8 =~ od;. In

other words, the class of 8 in ExtR(Q, N) is the obstruction to splitting the short
exact sequence above.

Suppose n is a large integer such that N/I"N — M/I™M is a split injection. This
implies
0— N/I"N - M/I"M — Q/I"Q — 0.
is still short exact. Also, the sequence
FJI"F 2 FyJI"Fy — Q/I"Q — 0

is still exact. Arguing as above we see that the map 3 : F}/I"F; — N/I™N induced
by 3 is equal to 7, o d; for some map 7, : Fy/I"Fy — N/I"N. Since Fy is free we
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can lift 7,, to a map ~, : Fy — N and then we see that § — v, o d; is a map from
Fy into I™N. In other words we conclude that

8 elm (HomR(FO, N) = HomR(Fl,N)> + I"Homp(Fy, N).
for this n.

Since we have this property for arbitrarily large n by assumption we conclude
that the image of § in the cokernel of Homp(Fy, N) — Hompg(Fy, N) is zero by
Lemma Hence § is in the image of the map Hompg(Fy, N) — Hompg(Fy, N)
as desired. d

75. Tor groups and flatness

O0LY In this section we use some of the homological algebra developed in the previous
section to explain what Tor groups are. Namely, suppose that R is a ring and that
M, N are two R-modules. Choose a resolution F, of M by free R-modules. See
Lemma Consider the homological complex

F,@rN:... 2 ®r N - Fy®r N = Fy®r N

We define TorlR (M, N) to be the ith homology group of this complex. The following
lemma explains in what sense this is well defined.

00LZ |Lemma 75.1. Let R be a ring. Let My, Mo, N be R-modules. Suppose that Fy is
a free resolution of the module M and that Ge is a free resolution of the module
Ms. Let ¢ : My — My be a module map. Let o : Fg — G4 be a map of complezes
inducing ¢ on My = Coker(dg 1) — My = Coker(dg,1), see Lemma . Then the
induced maps

HZ(OL) : HZ(F. QR N) — HZ(G. QR N)

are independent of the choice of a. If ¢ is an isomorphism, so are all the maps
H;(a). If My = Ms, Fy = G,, and  is the identity, so are all the maps H;(«).

Proof. The proof of this lemma is identical to the proof of Lemma [71.5 O

Not only does this lemma imply that the Tor modules are well defined, but it also
provides for the functoriality of the constructions (M, N) ~— Tor(M,N) in the
first variable. Of course the functoriality in the second variable is evident. We
leave it to the reader to see that each of the Tor’ is in fact a functor

MOdR X MOdR — MOdR.

Here Modpg denotes the category of R-modules, and for the definition of the product
category see Categories, Definition Namely, given morphisms of R-modules
My — Ms and N7 — N> we get a commutative diagram

Torf(My, Ny) — Tor (M, Ny)

| |

Tor?(My, Ny) — Tor(My, Ny)

00MO Lemmal 75.2. Let R be a ring and let M be an R-module. Suppose that 0 —
N — N — N” — 0 is a short ezact sequence of R-modules. There exists a long
exact sequence

Torf(M,N') — Torf(M,N) — Torf(M,N") - M&rN' — M®rN — M@rN" — 0


https://stacks.math.columbia.edu/tag/00LZ
https://stacks.math.columbia.edu/tag/00M0

COMMUTATIVE ALGEBRA 175
Proof. The proof of this is the same as the proof of Lemma [71.6 O

Consider a homological double complex of R-modules

L p—" Ao 4> Ao
5 5 5

d A g d Aia d Ao
5 5 5

¢ Az d Ao d Ap,2
5 5 5

This means that d; ; : A;; — Ai—1; and 0; 5 : A;; — A; j—1 have the following
properties

(1) Any composition of two d; ; is zero. In other words the rows of the double
complex are complexes.

(2) Any composition of two d; ; is zero. In other words the columns of the
double complex are complexes.

(3) For any pair (i,j) we have ;_1;od;;j = d;j—100;;. In other words, all
the squares commute.

The correct thing to do is to associate a spectral sequence to any such double
complex. However, for the moment we can get away with doing something slightly
easier.

Namely, for the purposes of this section only, given a double complex (A, ., d,d)
set R(A); = Coker(A; ; — Ag ;) and U(A); = Coker(A4; 1 — Aio). (The letters R
and U are meant to suggest Right and Up.) We endow R(A), with the structure
of a complex using the maps ¢. Similarly we endow U(A), with the structure
of a complex using the maps d. In other words we obtain the following huge
commutative diagram

L U(A)y —E-U(A) —2=U(A)
Lo Apo —2— A1 g —L— Ao R(A)o
§ 5 § §
d Ao d A d Ao R(A),
§ 5 § §
Lo Ay —2 A1y —L> A R(A),
§ 5 § §
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(This is no longer a double complex of course.) It is clear what a morphism ® :
(Ae.e,d,0) — (Ba,e,d,d) of double complexes is, and it is clear that this induces
morphisms of complexes R(®) : R(A)e — R(B)e and U(®) : U(A)e — U(B)s.
Lemma, 75.3. Let (Aee,d,d) be a double complex such that

(1) Each row A, ; is a resolution of R(A);.
(2) Each column A; e is a resolution of U(A);.

Then there are canonical isomorphisms
Hi(R(A)s) = H(U(A)a).
The isomorphisms are functorial with respect to morphisms of double complexes

with the properties above.

Proof. We will show that H;(R(A).)) and H;(U(A),.) are canonically isomorphic

to a third group. Namely

{(az‘,o, Ai—1,1y--- 7040,1') | d(ai,o) = 5(01'71,1), ceey d(al,ifl) = 5(a0,i)}
{d(aiv1,0) +6(ai1), d(ain) +d(ai—12),...,d(ar;) +d(aoiv1)}

Here we use the notational convention that a; ; denotes an element of A; ;. In other

words, an element of H; is represented by a zig-zag, represented as follows for ¢ = 2

ago ——>d(az0) = d(a1,1)

ayl—————> d(al,l) = (5(a0’2)

|

ao,2

Naturally, we divide out by “trivial” zig-zags, namely the submodule generated by
elements of the form (0,...,0,—d(ai+1,1—:), d(at4+1,t—:),0,...,0). Note that there
are canonical homomorphisms

H;(A) — H;(R(A)), (ai0,ai-11,---,060,) > class of image of ag
and

H;(A) — H;(U(A)e), (ai0,ai-11,---,00,) > class of image of a; ¢

First we show that these maps are surjective. Suppose that 7 € H;(R(A),). Let
r € R(A); be a cocycle representing the class of 7. Let ap; € Ag; be an element
which maps to r. Because d(r) = 0, we see that d(ag ;) is in the image of d. Hence
there exists an element a; ;_1 € Ay ;—1 such that d(a1;—1) = 6(ao,;). This in turn
implies that §(as ;—1) is in the kernel of d (because d(d(a1,-1)) = d(d(a1,i—1)) =
§(6(ap,i)) = 0. By exactness of the rows we find an element as;_o such that
d(ag,;—2) = 6(a1,—1). And so on until a full zig-zag is found. Of course surjectivity
of H; — H;(U(A)) is shown similarly.

To prove injectivity we argue in exactly the same way. Namely, suppose we are
given a zig-zag (a;,0,a;-1,1,- - -, a0,;) which maps to zero in H;(R(A),). This means
that ag,; maps to an element of Coker(A4;1 — A; o) which is in the image of ¢ :
Coker(A;41,1 — Aiy1,0) = Coker(A; 1 — A; o). In other words, ag; is in the image
of 6@d: Agitv19P A1, = Ao, From the definition of trivial zig-zags we see that we
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may modify our zig-zag by a trivial one and assume that ag; = 0. This immediately
implies that d(ai,—1) = 0. As the rows are exact this implies that a; ;1 is in the
image of d : A3 ;1 — Aj,;—1. Thus we may modify our zig-zag once again by a
trivial zig-zag and assume that our zig-zag looks like (a;0,ai—1,1,-.-,a2,—2,0,0).
Continuing like this we obtain the desired injectivity.

If ®:(Aee,d,d) = (B, d,d) is a morphism of double complexes both of which
satisfy the conditions of the lemma, then we clearly obtain a commutative diagram

U(A)e) =—— Hi(A) —— Hi(R(A).)
)s)

Hi(U(B)e) =— H;(B) — H;(R(B).)

This proves the functoriality. [l

Remark| 75.4. The isomorphism constructed above is the “correct” one only up
to signs. A good part of homological algebra is concerned with choosing signs for
various maps and showing commutativity of diagrams with intervention of suitable
signs. For the moment we will simply use the isomorphism as given in the proof
above, and worry about signs later.

Lemmal 75.5. Let R be a ring. For anyi > 0 the functors Modg x Modr — Modg,
(M, N) = Torf(M,N) and (M, N) — Tor®(N, M) are canonically isomorphic.

Proof. Let F, be a free resolution of the module M and let G4 be a free resolution
of the module N. Consider the double complex (A4; ;,d,d) defined as follows:

(1 set Ai,j = Fz QR Gj,
(2) set d;; : F; ®r G; = Fi_1 ® G equal to dp; ® id, and
(3) set (Si’j :F, ®r Gj —F® Gj,1 equal to id ® dGJ.

— —

This double complex is usually simply denoted Fy @ G,.

Since each G is free, and hence flat we see that each row of the double complex is
exact except in homological degree 0. Since each F; is free and hence flat we see
that each column of the double complex is exact except in homological degree 0.
Hence the double complex satisfies the conditions of Lemma [75.3

To see what the lemma says we compute R(A)es and U(A),. Namely,

R(A); = Coker(A1; — Ao,)

Coker(Fy ®r G; — Fo ®r G;)
Coker(Fy — Fy) ®r G;

= M®grG;

In fact these isomorphisms are compatible with the differentials § and we see that
R(A)e = M ®r G, as homological complexes. In exactly the same way we see that
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U(A)e = Fe @r N. We get
Tor®(M,N) = H;

Here the third equality is Lemma [75.3] and the fifth equality uses the isomorphism
VW =W ®V of the tensor product.

Functoriality. Suppose that we have R-modules M, N,, v = 1,2. Let ¢ : M; —
My and 9 : N; — N be morphisms of R-modules. Suppose that we have free
resolutions F, o for M, and free resolutions G, . for IN,. By Lemma we may
choose maps of complexes o : Fy 4 = Fy e and 3 : G164 = G2,4 compatible with ¢
and ¥. We claim that the pair («, 8) induces a morphism of double complexes

a@ﬂ : Fl,o QR Gl,o —>F27o QR G27o

This is really a very straightforward check using the rule that F ;QrG1,; — F2; QR
G ; is given by o; ® 8; where ay, resp. 3; is the degree 4, resp. j component of «,
resp. 8. The reader also readily verifies that the induced maps R(F1 e @ G1,0)e —
R(F5,e®1rG2)e agrees with the map M1 ® g G1,6 — Mz ®@p G2 induced by ¢ ® S.
Similarly for the map induced on the U(—), complexes. Thus the statement on
functoriality follows from the statement on functoriality in Lemma [75.3] O

Remark| 75.6. An interesting case occurs when M = N in the above. In this case
we get a canonical map Tor (M, M) — Torl*(M, M). Note that this map is not the
identity, because even when ¢ = 0 this map is not the identity! For example, if V' is
a vector space of dimension n over a field, then the switch map V @,V - V @ V
has (n? + n)/2 eigenvalues +1 and (n? — n)/2 eigenvalues —1. In characteristic 2
it is not even diagonalizable. Note that even changing the sign of the map will not
get rid of this.

Lemma 75.7. Let R be a Noetherian ring. Let M, N be finite R-modules. Then
Torf‘(M, N) is a finite R-module for all p.

Proof. This holds because Torf (M, N) is computed as the cohomology groups of
a complex Fy ®g N with each F;, a finite free R-module, see Lemma [71.1 O

Lemma 75.8. Let R be a ring. Let M be an R-module. The following are
equivalent:

(1) The module M is flat over R.

(2) For alli >0 the functor Torf(M,—) is zero.

(3) The functor Tor®(M,—) is zero.

(4) For all ideals I C R we have Torj*(M,R/I) = 0.

(5) For all finitely generated ideals I C R we have Tori'(M, R/T) = 0.

Proof. Suppose M is flat. Let N be an R-module. Let F, be a free resolution of
N. Then F, ®p M is a resolution of N ® zp M, by flatness of M. Hence all higher
Tor groups vanish.
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It now suffices to show that the last condition implies that M is flat. Let I C R
be an ideal. Consider the short exact sequence 0 - I — R — R/I — 0. Apply
Lemma [75.2] We get an exact sequence

Torf'(M,R/T) - M @I - M &g R — M @g R/I = 0

Since obviously M ®g R = M we conclude that the last hypothesis implies that
M ®pr I — M is injective for every finitely generated ideal I. Thus M is flat by
Lemma 395 [l

Remark| 75.9. The proof of Lemma actually shows that
Torf(M,R/I) = Ker(I ®g M — M).

76. Functorialities for Tor

In this section we briefly discuss the functoriality of Tor with respect to change of
ring, etc. Here is a list of items to work out.
(1) Given a ring map R — R/, an R-module M and an R’-module N’ the
R-modules Tory (M, N') have a natural R’-module structure.
(2) Given aring map R — R’ and R-modules M, N there is a natural R-module
map Tor™(M, N) — Torl (M @z R',N @ R').
(3) Given a ring map R — R’ an R-module M and an R’-module N’ there
exists a natural R-module map Tory (M, N') — TorlR/(M ®r R, N').
Lemmal 76.1. Given a flat ring map R — R’ and R-modules M, N the natural
R-module map Tor®(M,N)®r R’ — TOT'iR/ (M®rR',N®grR) is an isomorphism
for all i.

Proof. Omitted. This is true because a free resolution Fy of M over R stays exact
when tensoring with R’ over R and hence (Fe ®g N)®pr R’ computes the Tor groups
over R'. |

The following lemma does not seem to fit anywhere else.

Lemma 76.2. Let R be a ring. Let M = colim M; be a filtered colimit of R-

modules. Let N be an R-module. Then Torf (M, N) = colim Tor®(M;, N) for all
n.

Proof. Choose a free resolution Fy of N. Then Fy, ® g M = colim Fy ® g M; as
complexes by Lemma [12.9] Thus the result by Lemma [8.8] O
77. Projective modules

Some lemmas on projective modules.

Definition 77.1. Let R be a ring. An R-module P is projective if and only if the
functor Hompg(P, —) : Modg — Modg, is an exact functor.

The functor Hompg(M, —) is left exact for any R-module M, see Lemma [10.1]
Hence the condition for P to be projective really signifies that given a surjection of
R-modules N — N’ the map Hompg(P, N) — Hompg (P, N') is surjective.

Lemmal 77.2. Let R be a ring. Let P be an R-module. The following are equiv-
alent
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(1) P is projective,
(2) P is a direct summand of a free R-module, and
(3) Exth(P,M) =0 for every R-module M.

Proof. Assume P is projective. Choose a surjection 7 : ' — P where F is a free
R-module. As P is projective there exists a ¢ € Hompg(P, F') such that 7 oi = idp.
In other words F' = Ker(w) @ i(P) and we see that P is a direct summand of F.

Conversely, assume that P @ @ = F is a free R-module. Note that the free module
F = @,c; Ris projective as Hompg(F, M) = [[,.; M and the functor M — [],., M
is exact. Then Homp(F, —) = Hompg (P, —) x Homp(Q, —) as functors, hence both
P and @ are projective.

Assume P @ (Q = F is a free R-module. Then we have a free resolution F, of the
form

L FSFLFES PO

where the maps a, b alternate and are equal to the projector onto P and (). Hence
the complex Hom g (F,, M) is split exact in degrees > 1, whence we see the vanishing
in (3).

Assume Extp(P, M) = 0 for every R-module M. Pick a free resolution Fy — P.
Set M = Im(F; — Fy) = Ker(Fy — P). Consider the element & € Extp(P, M)
given by the class of the quotient map 7 : F} — M. Since £ is zero there exists a
map s : Fy — M such that # = s o (F; — Fp). Clearly, this means that

Fy = KGI'(S) S¥) Ker(FO — P) =P& KGI‘(FO — P)
and we win. O

Lemmal 77.3. Let R be a Noetherian ring. Let P be a finite R-module. If
Extr(P, M) =0 for every finite R-module M, then P is projective.

This lemma can be strengthened: There is a version for finitely presented R-modules
if R is not assumed Noetherian. There is a version with M running through all
finite length modules in the Noetherian case.

Proof. Choose a surjection R®™ — P with kernel M. Since Ext (P, M) = 0 this
surjection is split and we conclude by Lemma O

Lemmal 77.4. A direct sum of projective modules is projective.

Proof. This is true by the characterization of projectives as direct summands of
free modules in Lemma [77.2] O

Lemma|77.5. Let R be a ring. Let I C R be a nilpotent ideal. Let P be a projective
R/I-module. Then there exists a projective R-module P such that P/IP = P.

Proof. By Lemma [77.2] we can choose a set A and a direct sum decomposition
@D.ca R/I = P& K for some R/I-module K. Write F = @, 4 R for the free
R-module on A. Choose a lift p : FF — F of the projector p associated to the
direct summand P of @,., R/I. Note that p? — p € Endg(F) is a nilpotent
endomorphism of F (as I is nilpotent and the matrix entries of p? — p are in I;
more precisely, if I"™ = 0, then (p? —p)™ = 0). Hence by Lemmawe can modify
our choice of p and assume that p is a projector. Set P = Im(p). (]
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Lemma| 77.6. Let R be a ring. Let I C R be a locally nilpotent ideal. Let P be a
finite projective R/I-module. Then there exists a finite projective R-module P such
that P/IP = P.

Proof. Recall that P is a direct summand of a free R/I-module @, ., R/I by

Lemma As P is finite, it follows that P is contained in @, 4 R/I for
some A’ C A finite. Hence we may assume we have a direct sum decomposition
(R/I)®" = P® K for some n and some R/I-module K. Choose a lift p € Mat(n x
n, R) of the projector p associated to the direct summand P of (R/I)®". Note that
p? —p € Mat(n x n, R) is nilpotent: as I is locally nilpotent and the matrix entries
cij of p? —p are in I we have c}; = 0 for some ¢ > 0 and then (p* — )" =0 (by
looking at the matrix coefficients). Hence by Lemma we can modify our choice
of p and assume that p is a projector. Set P = Im(p). O

Lemma 77.7. Let R be a ring. Let I C R be an ideal. Let M be an R-module.
Assume

(1) T is nilpotent,

(2) M/IM is a projective R/I-module,

(3) M is a flat R-module.
Then M is a projective R-module.

Proof. By Lemma we can find a projective R-module P and an isomorphism
P/IP — M/IM. We are going to show that M is isomorphic to P which will finish
the proof. Because P is projective we can lift the map P — P/IP — M/IM to an
R-module map P — M which is an isomorphism modulo I. Since I"™ = 0 for some
n, we can use the filtrations

oO=I"McI"™'Mc...cIMcM
o=I"Pci™'Pc...cIPcP

to see that it suffices to show that the induced maps I*P/I**1P — [¢M /11 M
are bijective. Since both P and M are flat R-modules we can identify this with the
map

I/ 1" @p,p P/IP — I*/ 1" @p,r M/IM
induced by P — M. Since we chose P — M such that the induced map P/IP —
M/IM is an isomorphism, we win. (I

78. Finite projective modules

Definition 78.1. Let R be a ring and M an R-module.

(1) We say that M is locally free if we can cover Spec(R) by standard opens
D(f;), i € I such that My, is a free Ry,-module for all i € I.

(2) We say that M is finite locally free if we can choose the covering such that
each My, is finite free.

(3) We say that M is finite locally free of rank r if we can choose the covering
such that each My, is isomorphic to R;‘?f.

Note that a finite locally free R-module is automatically finitely presented by
Lemma 23.2] Moreover, if M is a finite locally free module of rank r over a ring


https://stacks.math.columbia.edu/tag/0D47
https://stacks.math.columbia.edu/tag/05CG
https://stacks.math.columbia.edu/tag/00NW

00NX

COMMUTATIVE ALGEBRA 182

R and if R is nonzero, then r is uniquely determined by Lemma (because at
least one of the localizations Ry, is a nonzero ring).

Lemma 78.2. Let R be a ring and let M be an R-module. The following are
equivalent

(1) M is finitely presented and R-flat,

(2) M is finite projective,

(3) M is a direct summand of a finite free R-module,

(4) M is finitely presented and for all p € Spec(R) the localization M, is free,

(5) M is finitely presented and for all mazimal ideals m C R the localization
My, is free,

(6) M is finite and locally free,

(7) M is finite locally free, and

(8) M is finite, for every prime p the module M, is free, and the function

pur : Spec(R) — Z,  p — dim,, ) M ®r K(p)
is locally constant in the Zariski topology.

Proof. First suppose M is finite projective, i.e., (2) holds. Take a surjection R™ —
M and let K be the kernel. Since M is projective, 0 - K — R™ — M — 0 splits.
Hence (2) = (3). The implication (3) = (2) follows from the fact that a direct
summand of a projective is projective, see Lemma [77.2]

Assume (3), so we can write K & M = R¥™. So K is a direct summand of R" and
thus finitely generated. This shows M = R%"/K is finitely presented. In other
words, (3) = (1).

Assume M is finitely presented and flat, i.e., (1) holds. We will prove that (7)
holds. Pick any prime p and x1,...,x, € M which map to a basis of M Qg k(p).
By Nakayama’s lemma (in the form of Lemma these elements generate M,
for some g € R, g € p. The corresponding surjection ¢ : RSBT — M, has the
following two properties: (a) Ker(y) is a finite R;-module (see Lemma and
(b) Ker(p) ® k(p) = 0 by flatness of My over R, (see Lemma [39.12). Hence by
Nakayama’s lemma again there exists a ¢’ € R,y such that Ker(¢),, = 0. In other
words, Mg is free.

A finite locally free module is a finite module, see Lemma hence (7) = (6).
It is clear that (6) = (7) and that (7) = (8).

A finite locally free module is a finitely presented module, see Lemma [23.2] hence
(7) = (4). Of course (4) implies (5). Since we may check flatness locally (see
Lemma [39.18]) we conclude that (5) implies (1). At this point we have

(2) (3) (1) (7) (6)

N

(5) == (4) (8)

Suppose that M satisfies (1), (4), (5), (6), and (7). We will prove that (3) holds. Tt
suffices to show that M is projective. We have to show that Hompg(M, —) is exact.
Let 0 - N” — N — N’ — 0 be a short exact sequence of R-module. We have to
show that 0 — Hompg (M, N”) — Homg (M, N) — Homp(M, N’') — 0 is exact. As
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M is finite locally free there exist a covering Spec(R) = |J D(f;) such that My, is
finite free. By Lemma [10.2] we see that

0 — Homp(M,N")s, — Homp(M,N)s, — Homgr(M,N")s, — 0

is equal to 0 — Hompg, (My,,N{ ) — Homp, (My,, Ny,) — Hompg, (My,, Nt,) — 0
which is exact as My, is free and as the localization 0 — N} — Ny, — Ni — 0

is exact (as localization is exact). Whence we see that 0 — Hompg(M, N ) —
Homp (M, N) — Homp(M, N') — 0 is exact by Lemma [23.2]

Finally, assume that (8) holds. Pick a maximal ideal m C R. Pick x1,...,2, € M
which map to a x(m)-basis of M @g x(m) = M/mM. In particular pps(m) = r.
By Nakayama’s Lemma there exists an f € R, f ¢ m such that z1,..., 2,
generate My over Ry. By the assumption that pys is locally constant there exists
a g € R, g € m such that p,s is constant equal to 7 on D(g). We claim that

\I/:R;?; — My, (al,...,aT)HZaixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that (7)
holds. To see the claim it suffices to show that the induced map on localizations
W, : RY" — M, is an isomorphism for all p € D(fg), see Lemma m By our

choice of f the map ¥, is surjective. By assumption (8) we have M, = R?pM(p)

and by our choice of g we have pp(p) = r. Hence U, determines a surjection
R?T — M, = R?T whence is an isomorphism by Lemma (Of course this last
fact follows from a simple matrix argument also.) O

Lemma 78.3. Let R be a reduced ring and let M be an R-module. Then the
equivalent conditions of Lemma[78.4 are also equivalent to
(9) M is finite and the function pys : Spec(R) — Z, p — dim ) M ®@r k(p) is
locally constant in the Zariski topology.

Proof. Pick a maximal ideal m C R. Pick z1,...,2, € M which map to a x(m)-
basis of M ®p k(m) = M/mM. In particular pp;(m) = r. By Nakayama’s Lemma
[20.1] there exists an f € R, f ¢ m such that x1,...,z, generate My over Ry. By
the assumption that pjs is locally constant there exists a ¢ € R, g € m such that
pu is constant equal to r on D(g). We claim that

\I/:Rj?gr—>Mfg, (al,...,ar)»—>2aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that
(7) holds. Since ¥ is surjective, it suffices to show that ¥ is injective. Since Ry,
is reduced, it suffices to show that W is injective after localization at all minimal
primes p of Ry4, see Lemma However, we know that R, = x(p) by Lemma
and pa(p) = r hence ¥y, : RY™ — M ®g £(p) is an isomorphism as a surjective
map of finite dimensional vector spaces of the same dimension. O

Remark| 78.4. It is not true that a finite R-module which is R-flat is automat-
ically projective. A counter example is where R = C*°(R) is the ring of infinitely
differentiable functions on R, and M = Ry = R/I where m = {f € R | f(0) = 0}
and I ={f € R|3e,e>0: f(x) =0Vz,|z| <€}

Lemma 78.5. (Warning: see Remark ) Suppose R is a local ring, and M is
a finite flat R-module. Then M is finite free.
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Proof. Follows from the equational criterion of flatness, see Lemma[39.11] Namely,
suppose that z1,...,2, € M map to a basis of M/mM. By Nakayama’s Lemma
[20.7] these elements generate M. We want to show there is no relation among the
x;. Instead, we will show by induction on n that if xq,...,z, € M are linearly
independent in the vector space M/mM then they are independent over R.

The base case of the induction is where we have x € M, x € mM and a relation
fxr = 0. By the equational criterion there exist y; € M and a; € R such that
x =Y ajy; and fa; = 0 for all j. Since z ¢ mM we see that at least one a; is a
unit and hence f = 0.

Suppose that Y fiz; is a relation among x1,...,2,. By our choice of x; we have
fi € m. According to the equational criterion of flatness there exist a;; € R and
y; € M such that z; = ) a;;y; and > fia;; = 0. Since x, ¢ mM we see that
anj ¢ m for at least one j. Since ) fia;; = 0 we get f, = Z:’;ll(—aij/anj)fi. The
relation 3" f;z; = 0 now can be rewritten as Y7 fi(xi + (—aij/an;)zn) = 0. Note
that the elements x; + (—a;; / nj)Ty map to n —1 linearly independent elements of
M/mM. By induction assumption we get that all the f;, ¢ < n —1 have to be zero,

and also f, = Z?;ll(—aij /an;) fi- This proves the induction step. O

Lemma 78.6. Let R — S be a flat local homomorphism of local rings. Let M
be a finite R-module. Then M is finite projective over R if and only if M @p S is
finite projective over S.

Proof. By Lemma [78.2] being finite projective over a local ring is the same thing as
being finite free. Suppose that M ®p S is a finite free S-module. Pick z1,...,z, €
M whose images in M/mrM form a basis over x(m). Then we see that z; ®
1,...,2z. ® 1 are a basis for M ®g S. This implies that the map R®" — M, (a;) —
> a;x; becomes an isomorphism after tensoring with S. By faithful flatness of
R — S, see Lemma we see that it is an isomorphism. O

Lemma 78.7. Let R be a semi-local ring. Let M be a finite locally free module. If
M has constant rank, then M is free. In particular, if R has connected spectrum,
then M is free.

Proof. Omitted. Hints: First show that M/m; M has the same dimension d for all

maximal ideal my,...,m, of R using the rank is constant. Next, show that there
exist elements x1,...,24 € M which form a basis for each M/m;M by the Chinese
remainder theorem. Finally show that x1,..., x4 is a basis for M. ([

Here is a technical lemma that is used in the chapter on groupoids.

Lemma 78.8. Let R be a local ring with mazimal ideal m and infinite residue
field. Let R — S be a ring map. Let M be an S-module and let N C M be an
R-submodule. Assume

(1) S is semi-local and mS is contained in the Jacobson radical of S,

(2) M is a finite free S-module, and

(3) N generates M as an S-module.
Then N contains an S-basis of M.
Proof. Assume M is free of rank n. Let I C S be the Jacobson radical. By

Nakayama’s Lemma [20.1] a sequence of elements my, ..., m,, is a basis for M if and
only if i; € M/IM generate M /IM. Hence we may replace M by M/IM, N by
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N/(NNIM), Rby R/m, and S by S/IS. In this case we see that S is a finite
product of fields S = k1 x ... x k. and M = k" x ... x k&". The fact that N ¢ M
generates M as an S-module means that there exist z; € N such that a linear
combination Y a;z; with a; € S has a nonzero component in each factor k".
Because R = k is an infinite field, this means that also some linear combination
y = > cjx; with ¢; € k has a nonzero component in each factor. Hence y € N
generates a free direct summand Sy C M. By induction on n the result holds for
M /Sy and the submodule N = N/(N N Sy). In other words there exist s, ...,7,
in N which (freely) generate M/Sy. Then y,ya, ..., y, (freely) generate M and we
win. (I

Lemma 78.9. Let R be ring. Let L, M, N be R-modules. The canonical map
Homp(M,N)®r L — Homp(M,N ®g L)
is an isomorphism if M is finite projective.

Proof. By Lemma we see that M is finitely presented as well as finite locally
free. By Lemmas [10.2] and [I2.16] formation of the left and right hand side of the
arrow commutes with localization. We may check that our map is an isomorphism
after localization, see Lemma [23.2] Thus we may assume M is finite free. In this
case the lemma is immediate. |

79. Open loci defined by module maps

The set of primes where a given module map is surjective, or an isomorphism is
sometimes open. In the case of finite projective modules we can look at the rank
of the map.

Lemmal 79.1. Let R be a ring. Let ¢ : M — N be a map of R-modules with N a
finite R-module. Then we have the equality
U={pCR|ygp: M, = N, is surjective}
={pCR|e®k(p): MQkr(p) > N r(p) is surjective}

and U is an open subset of Spec(R). Moreover, for any f € R such that D(f) C U
the map My — Ny is surjective.

Proof. The equality in the displayed formula follows from Nakayama’s lemma.
Nakayama’s lemma also implies that U is open. See Lemma [20.1] especially part
(3). If D(f) C U, then My — Ny is surjective on all localizations at primes of Ry,
and hence it is surjective by Lemma [23.1 (I

Lemma 79.2. Let R be a ring. Let ¢ : M — N be a map of R-modules with M
finite and N finitely presented. Then

U={p CR|ygp: M, = N, is an isomorphism}
is an open subset of Spec(R).
Proof. Let p € U. Pick a presentation N = R®"/%"._,  Rk;. Denote e; the
image in N of the ith basis vector of R®™. For each i € {1,...,n} choose an
element m; € M, such that ¢(m;) = f;e; for some f; € R, f; ¢ p. This is possible
as p is an isomorphism. Set f = fi...f, and let ¥ : Rj‘?” — My be the map

which maps the ith basis vector to m;/f;. Note that ¢s o1 is the localization at
[ of the given map R®" — N. As ¢, is an isomorphism we see that ¢(k;) is an
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element of M which maps to zero in M,. Hence we see that there exist g; € R,
g; & p such that g;i(k;) = 0. Setting g = g1 ... gm, we see that ¥, factors through
Nyg to give a map x : Nyg — My,. By construction x is a right inverse to ¢y,.
It follows that x, is an isomorphism. By Lemma there isan h € R, h € p
such that xyp, : Nygn — Mgy, is surjective. Hence ¢4, and xj are mutually inverse
maps, which implies that D(fgh) C U as desired. ]

Lemma 79.3. Let R be a ring. Let p C R be a prime. Let M be a finitely
presented R-module. If M, is free, then there is an f € R, f € p such that My is
a free Ry-module.

Proof. Choose a basis x1,...,z, € M,. We can choose an f € R, f & p such
that x; is the image of some y; € M. After replacing y; by f™y; for m > 0 we
may assume y; € M. Namely, this replaces x1,...,z, by f™x1,..., f™x, which
is still a basis as f maps to a unit in R,. Hence we obtain a homomorphism ¢ =
(Y1, yn) : R®® — M of R-modules whose localization at p is an isomorphism.
By Lemma we can find an f € R, f & p such that ¢4 is an isomorphism for
all primes ¢ C R with f & g. Then it follows from Lemma [23.1] that ¢y is an
isomorphism and the proof is complete. O

Lemmal 79.4. Let R be a ring. Let ¢ : Pi — Py be a map of finite projective
modules. Then
(1) The set U of primes p € Spec(R) such that ¢ @ k(p) is injective is open
and for any f € R such that D(f) C U we have
(a) Pi,f — P» ¢ is injective, and
(b) the module Coker(y)y is finite projective over Ry.
(2) The set W of primes p € Spec(R) such that ¢ @ k(p) is surjective is open
and for any f € R such that D(f) C W we have
(a) P1,y — Py is surjective, and
(b) the module Ker(p)y is finite projective over Ry.
(3) The set V of primes p € Spec(R) such that ¢ ® k(p) is an isomorphism is
open and for any f € R such that D(f) C'V the map ¢ : P1 ; — P 5 is an
isomorphism of modules over Ry.

Proof. To prove the set U is open we may work locally on Spec(R). Thus we may
replace R by a suitable localization and assume that P, = R™ and P, = R™, see
Lemma In this case injectivity of ¢ ® k(p) is equivalent to ny < ny and some
ny X ny minor f of the matrix of ¢ being invertible in x(p). Thus D(f) C U. This
argument also shows that P, — P, is injective for p € U.

Now suppose D(f) C U. By the remark in the previous paragraph and Lemma
we see that Py y — Py is injective, i.e., (1)(a) holds. By Lemmal78.2]to prove
(1)(b) it suffices to prove that Coker(y) is finite projective locally on D(f). Thus,
as we saw above, we may assume that P, = R™ and P, = R™ and that some
minor of the matrix of ¢ is invertible in R. If the minor in question corresponds to
the first n; basis vectors of R™2, then using the last ny — ny basis vectors we get a
map R™~"™ — R™ — Coker(p) which is easily seen to be an isomorphism.

Openness of W and (2)(a) for D(f) C W follow from Lemma Since Py s is
projective over Ry we see that ¢; : P, f — P» ¢ has a section and it follows that
Ker(¢)ys is a direct summand of P ;. Therefore Ker(y); is finite projective. Thus
(2)(b) holds as well.
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It is clear that V' = U N W is open and the other statement in (3) follows from
(1)(a) and (2)(a). O

80. Faithfully flat descent for projectivity of modules

In the next few sections we prove, following Raynaud and Gruson [GR7I], that the
projectivity of modules descends along faithfully flat ring maps. The idea of the
proof is to use dévissage & la Kaplansky [Kap5§| to reduce to the case of countably
generated modules. Given a well-behaved filtration of a module M, dévissage allows
us to express M as a direct sum of successive quotients of the filtering submodules
(see Section . Using this technique, we prove that a projective module is a
direct sum of countably generated modules (Theorem . To prove descent
of projectivity for countably generated modules, we introduce a “Mittag-Leffler”
condition on modules, prove that a countably generated module is projective if and
only if it is flat and Mittag-Leffler (Theorem, and then show that the property
of being a Mittag-Lefller module descends (Lemmal95.1)). Finally, given an arbitrary
module M whose base change by a faithfully flat ring map is projective, we filter
M by submodules whose successive quotients are countably generated projective
modules, and then by dévissage conclude M is a direct sum of projectives, hence
projective itself (Theorem .

We note that there is an error in the proof of faithfully flat descent of projectivity
in [GRTI]. There, descent of projectivity along faithfully flat ring maps is deduced
from descent of projectivity along a more general type of ring map ([GR71, Example
3.1.4(1) of Part II]). However, the proof of descent along this more general type
of map is incorrect. In [Gru73], Gruson explains what went wrong, although he
does not provide a fix for the case of interest. Patching this hole in the proof of
faithfully flat descent of projectivity comes down to proving that the property of
being a Mittag-Leffler module descends along faithfully flat ring maps. We do this
in Lemma [05.11

81. Characterizing flatness

In this section we discuss criteria for flatness. The main result in this section is
Lazard’s theorem (Theorembelovv)7 which says that a flat module is the colimit
of a directed system of free finite modules. We remind the reader of the “equational
criterion for flatness”, see Lemma It turns out that this can be massaged
into a seemingly much stronger property.

Lemma 81.1. Let M be an R-module. The following are equivalent:

(1) M is flat.

(2) If f : R™ — M is a module map and x € Ker(f), then there are module
maps h: R — R™ and g : R™ — M such that f = go h and x € Ker(h).

(3) Suppose f: R* — M is a module map, N C Ker(f) any submodule, and
h: R* — R™ a map such that N C Ker(h) and f factors through h.
Then given any x € Ker(f) we can find @ map h' : R™ — R™ such that
N + Rz C Ker(h') and f factors through h'.

(4) If f : R™ — M is a module map and N C Ker(f) is a finitely generated
submodule, then there are module maps h : R — R™ and g : R™ — M
such that f = goh and N C Ker(h).
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Proof. That (1) is equivalent to (2) is just a reformulation of the equational crite-
rion for ﬂatnessﬂ To show (2) implies (3), let g : R™ — M be the map such that
f factors as f = goh. By (2) find B” : R™ — R™ such that h” kills h(z) and
g : R™ — M factors through h”. Then taking h’ = h' o h works. (3) implies (4) by
induction on the number of generators of N C Ker(f) in (4). Clearly (4) implies
(2). O

Lemmal 81.2. Let M be an R-module. Then M is flat if and only if the following
condition holds: if P is a finitely presented R-module and f : P — M a module
map, then there is a free finite R-module F and module maps h : P — F and
g: F — M such that f =goh.

Proof. This is just a reformulation of condition (4) from Lemma O

Lemmal 81.3. Let M be an R-module. Then M is flat if and only if the following
condition holds: for every finitely presented R-module P, if N — M is a surjective
R-module map, then the induced map Hompg (P, N) — Hompg (P, M) is surjective.

Proof. First suppose M is flat. We must show that if P is finitely presented, then
given a map f: P — M, it factors through the map N — M. By Lemma [81.2] the
map f factors through a map F' — M where F is free and finite. Since F' is free,
this map factors through N — M. Thus f factors through N — M.

Conversely, suppose the condition of the lemma holds. Let f : P — M be a
map from a finitely presented module P. Choose a free module N with a surjection
N — M onto M. Then f factors through N — M, and since P is finitely generated,
f factors through a free finite submodule of N. Thus M satisfies the condition of
Lemma [BT.2] hence is flat. O

Theorem 81.4 (Lazard’s theorem). Let M be an R-module. Then M is flat if
and only if it is the colimit of a directed system of free finite R-modules.

Proof. A colimit of a directed system of flat modules is flat, as taking directed
colimits is exact and commutes with tensor product. Hence if M is the colimit of
a directed system of free finite modules then M is flat.

For the converse, first recall that any module M can be written as the colimit of
a directed system of finitely presented modules, in the following way. Choose a
surjection f : RT — M for some set I, and let K be the kernel. Let E be the set
of ordered pairs (J, N) where J is a finite subset of I and N is a finitely generated
submodule of R/ N K. Then E is made into a directed partially ordered set by
defining (J,N) < (J', N’) if and only if J C J' and N C N’. Define M, = R/ /N
for e = (J,N), and define feor : M, — M, to be the natural map for e < €.
Then (M., feer) is a directed system and the natural maps f. : M, — M induce an

isomorphism colimeeg M, — M.

Now suppose M is flat. Let I = M x Z, write (x;) for the canonical basis of R!, and
take in the above discussion f : Rl — M to be the map sending z; to the projection

8In fact, a module map f : R® — M corresponds to a choice of elements z1,x2,...,zy, of M
(namely, the images of the standard basis elements e1, ez, ..., e,); furthermore, an element = €
Ker(f) corresponds to a relation between these z1,x2, ...,z (namely, the relation Zl fix; =0,
where the f; are the coordinates of z). The module map h (represented as an m X n-matrix)
corresponds to the matrix (a;;) from Lemma and the y; of Lemmaare the images of
the standard basis vectors of R™ under g.
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of i onto M. To prove the theorem it suffices to show that the e € F such that M,
is free form a cofinal subset of E. So let e = (J, N) € E be arbitrary. By Lemma
there is a free finite module F and maps h: R/ /N — F and g : F — M such

that the natural map f, : R’ /N — M factors as R’ /N 2 F % M. We are going
to realize F' as M, for some e’ > e.

Let {b1,...,b,} be a finite basis of F. Choose n distinct elements i1,...,4, € I
such that iy ¢ J for all £, and such that the image of z;, under f : Rf — M equals
the image of by under g : F' — M. This is possible since every element of M can
be written as f(z;) for infinitely many distinct ¢ € I (by our choice of I). Now let
J' = JU{iy,...,in}, and define R7 — F by x; — h(z;) for i € J and x;, — by for
¢=1,...,n. Let N’ = Ker(R”" — F). Observe:

(1) The square

R — s F

|

RI?M

is commutative, hence N C K = Ker(f);
(2) R’ — F is a surjection onto a free finite module, hence it splits and so N
is finitely generated;
(3) JCJ and N C N'.
By (1) and (2) ¢/ = (J',N’) is in E, by (3) ¢’ > e, and by construction M, =
R’ /N' = F is free. O

82. Universally injective module maps

Next we discuss universally injective module maps, which are in a sense comple-
mentary to flat modules (see Lemma [82.5)). We follow Lazard’s thesis [Laz69]; also
see [Lam99].

Definition 82.1. Let f : M — N be a map of R-modules. Then f is called
universally injective if for every R-module (), the map f ®pidg : M Qr Q@ —
N ®p Q is injective. A sequence 0 — M; — My — M3 — 0 of R-modules is called
universally exact if it is exact and M; — My is universally injective.

Example 82.2. Examples of universally exact sequences.

(1) A split short exact sequence is universally exact since tensoring commutes
with taking direct sums.

(2) The colimit of a directed system of universally exact sequences is universally
exact. This follows from the fact that taking directed colimits is exact and
that tensoring commutes with taking colimits. In particular the colimit of
a directed system of split exact sequences is universally exact. We will see
below that, conversely, any universally exact sequence arises in this way.

Next we give a list of criteria for a short exact sequence to be universally exact. They
are analogues of criteria for flatness given above. Parts (3)-(6) below correspond,
respectively, to the criteria for flatness given in Lemmas [39.11], BI.1] [81.3] and
Theorem
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058K |Theorem| 82.3. Let
0— My 25 My 25 My -0
be an exact sequence of R-modules. The following are equivalent:

(1) The sequence 0 — My — My — M3 — 0 is universally exact.
(2) For every finitely presented R-module Q, the sequence

0> M ®rQ > My;y®RrQ - M3®rQ —0
1S exact.
(3) Given elements x; € My (i = 1,...,n), y; € My (j = 1,...,m), and
ai; €R (i=1,...,n,5=1,...,m) such that for all i

fi(z) = Zj aijyj,

there exists z; € My (j =1,...,m) such that for all i,

€Ty = E jaijzj.

(4) Given a commutative diagram of R-module maps

R’ﬂ S R’H’L

L,

1

M1 HMQ

where m and n are integers, there exists a map R™ — My making the top
triangle commute.
(5) For every finitely presented R-module P, the R-module map Hompg (P, M) —
Hompg (P, Ms3) is surjective.
(6) The sequence 0 — My — My — M3 — 0 is the colimit of a directed system
of split exact sequences of the form
04)M1*>M271‘*>M37i*>0
where the M3 ; are finitely presented.
Proof. Obviously (1) implies (2).
Next we show (2) implies (3). Let fi(z;) = >_; aijy; be relations as in (3). Let
(d;) be a basis for R™, (e;) a basis for R, and R™ — R" the map given by d; —
> aije;. Let @ be the cokernel of R™ — R™. Then tensoring R — R" — Q — 0
by the map f1 : M7 — M5, we get a commutative diagram

MP" s MP" —— My @ Q — 0

R

MQEBmHMQGBnHM2®RQHO
where M{P™ — MP™ is given by

(Zl, ey Zm,) —> (Z] A15Z5y . Zj aanj),

and M$™ — M5"™ is given similarly. We want to show = = (z1,...,2,) € MP"
is in the image of MP™ — M®™. By (2) the map M; ® Q — M, ® Q is injective,
hence by exactness of the top row it is enough to show  maps to 0 in Ms ® @), and
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so by exactness of the bottom row it is enough to show the image of x in MP" is
in the image of M$™ — Mg™. This is true by assumption.

Condition (4) is just a translation of (3) into diagram form.

Next we show (4) implies (5). Let ¢ : P — M3 be a map from a finitely presented
R-module P. We must show that ¢ lifts to a map P — M;. Choose a presentation
of P,

R" 25 R™ 2, P 0.
Using freeness of R™ and R™, we can construct hy : R™ — M5 and then hy : R® —
M such that the following diagram commutes

g1 g2

Rr R™ P 0
N
0 My s, 2 0.

By (4) there is a map k; : R™ — M; such that kj 0 gy = hy. Now define hf, : R™ —
M2 by h/2 = hg — fl o k’l. Then

hyogr=haogi — fiokiogr =hgog — frohy =0.
Hence by passing to the quotient hf defines a map ¢’ : P — M such that ¢’ ogo =

h/ . In a diagram, we have
2 ’
92

R™ P
h;l V iw
f2
MQ I Md

where the top triangle commutes. We claim that ¢’ is the desired lift, i.e. that
f20¢’ = . From the definitions we have

faop'oga=faohy=faohy—faofioki = faohy=pogs.
Since g9 is surjective, this finishes the proof.
Now we show (5) implies (6). Write M3 as the colimit of a directed system of
finitely presented modules M3 ;, see Lemma [TT.3] Let My ; be the fiber product of
M3 ; and M; over Ms—Dby definition this is the submodule of My x M3 ; consisting
of elements whose two projections onto M3 are equal. Let M; ; be the kernel of the
projection My ; — Ms ;. Then we have a directed system of exact sequences

0— Ml,i — Mg’i — Ms,i — 0,

and for each ¢ a map of exact sequences

0 My ; My ; Ms ; 0
0 My M, Ms 0

compatible with the directed system. From the definition of the fiber product Ms ;,
it follows that the map M;, — M; is an isomorphism. By (5) there is a map
Ms ; — My lifting M3 ; — M3, and by the universal property of the fiber product
this gives rise to a section of My ; — Ms ;. Hence the sequences

0— Ml,i — MQ,Z' — Mg,i — 0
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split. Passing to the colimit, we have a commutative diagram

0 —— colim M ; — colim M3 ; — colim M3 ; ——0

.

0 M, Moy Ms 0

with exact rows and outer vertical maps isomorphisms. Hence colim Ms ; — My is
also an isomorphism and (6) holds.

Condition (6) implies (1) by Example (2). O

The previous theorem shows that a universally exact sequence is always a colimit of
split short exact sequences. If the cokernel of a universally injective map is finitely
presented, then in fact the map itself splits:

Lemma 82.4. Let
0—=M — My — Ms—0

be an exact sequence of R-modules. Suppose Ms is of finite presentation. Then
00— M, — My — M3z —0

is universally exact if and only if it is split.

Proof. A split short exact sequence is always universally exact, see Example [32.2
Conversely, if the sequence is universally exact, then by Theorem (5) applied
to P = Mj3, the map My — M3 admits a section. ([

The following lemma shows how universally injective maps are complementary to
flat modules.

Lemma 82.5. Let M be an R-module. Then M is flat if and only if any exact
sequence of R-modules

0—>M — My —>M—0

is universally exact.
Proof. This follows from Lemma and Theorem (5). O

Example| 82.6. Non-split and non-flat universally exact sequences.
(1) In spite of Lemma it is possible to have a short exact sequence of
R-modules
0— M — My — M3 —0
that is universally exact but non-split. For instance, take R = Z, let

My = @2, Z, let My = [[°2,Z, and let M3 be the cokernel of the
inclusion M7 — Ms. Then My, My, M3 are all flat since they are torsion-

free (More on Algebra, Lemma [22.11]), so by Lemma [82.5]
O—>M1—>M2—>M3—)O

is universally exact. However there can be no section s : M3 — Ms. In

fact, if = is the image of (2,22,23,...) € My in M3, then any module map

s : M3 — My must kill x. This is because = € 2" M3 for any n > 1, hence

s(x) is divisible by 2™ for all n > 1 and so must be 0.
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(2) In spite of Lemma [82.5 it is possible to have a short exact sequence of
R-modules

0— My - My — M3 —0
that is universally exact but with My, Mo, M3 all non-flat. In fact if M is
any non-flat module, just take the split exact sequence

O—-M—-MeeM—M—DO0.

For instance over R = Z, take M to be any torsion module.
(3) Taking the direct sum of an exact sequence as in (1) with one as in (2), we
get a short exact sequence of R-modules

00— M, — My — M3z —0

that is universally exact, non-split, and such that M;, My, M3 are all non-
flat.

Lemma 82.7. Let 0 — My — My — M3 — 0 be a universally exact sequence of
R-modules, and suppose My is flat. Then My and M3 are flat.

Proof. Let 0 -4 N — N’ — N” — 0 be a short exact sequence of R-modules.
Consider the commutative diagram

My @r N —— My ®g N —— M3 ®r N

| | |

M1®RNIHM2®RN/*>M3®RNI

| ! l

]\41 ®R Nl/ s M2 ®R NI/ - ]\43 ®R N//

(we have dropped the 0’s on the boundary). By assumption the rows give short
exact sequences and the arrow My ® N — My ® N’ is injective. Clearly this implies
that M1 ® N — M;®@ N’ is injective and we see that M; is flat. In particular the left
and middle columns give rise to short exact sequences. It follows from a diagram
chase that the arrow M3 ® N — M3 ® N’ is injective. Hence M3 is flat. ([l

Lemmal 82.8. Let R be a ring. Let M — M’ be a universally injective R-module
map. Then for any R-module N the map M @r N — M’ ®r N is universally
injective.

Proof. Omitted. O

Lemmal 82.9. Let R be a ring. A composition of universally injective R-module
maps is universally injective.

Proof. Omitted. O

Lemma 82.10. Let R be a ring. Let M — M’ and M’ — M" be R-module maps.
If their composition M — M" is universally injective, then M — M’ is universally
injective.

Proof. Omitted. O


https://stacks.math.columbia.edu/tag/058P
https://stacks.math.columbia.edu/tag/05CH
https://stacks.math.columbia.edu/tag/05CI
https://stacks.math.columbia.edu/tag/05CJ

05CK

05CL

05CM

COMMUTATIVE ALGEBRA 194

Lemma 82.11. Let R — S be a faithfully flat ring map. Then R — S is uni-
versally injective as a map of R-modules. In particular RN 1S = I for any ideal
ICR.

Proof. Let N be an R-module. We have to show that N — N ®p S is injective.
As S is faithfully flat as an R-module, it suffices to prove this after tensoring with
S. Hence it suffices to show that N g S > NQRQr SQr S, n®s—>n®1Q s is
injective. This is true because there is a retraction, namely, n® s® s’ — n®ss’. O

Lemmal 82.12. Let R — S be a ring map. Let M — M’ be a map of S-modules.
The following are equivalent

(1) M — M’ is universally injective as a map of R-modules,
2) for each prime q of S the map My — M is universally injective as a map
q q q
of R-modules,
3) for each mazimal ideal m of S the map My — M/ is universally injective
D m Yy mj
as a map of R-modules,
4) for each prime q of S the map My — M! is universally injective as a map
q q
of Ry-modules, where p is the inverse image of q in R, and
5) for each mazimal ideal m of S the map My — M, is universally injective
p m Yy mj
as a map of Ry-modules, where p is the inverse image of m in R.

Proof. Let N be an R-module. Let q be a prime of S lying over the prime p of R.
Then we have

(M ®p N)q =M,;®r N = M, AR, Ny.
Moreover, the same thing holds for M’ and localization is exact. Also, if N is
an Rp-module, then N, = N. Using this the equivalences can be proved in a
straightforward manner.

For example, suppose that (5) holds. Let K = Ker(M ® g N — M’ @z N). By
the remarks above we see that K, = 0 for each maximal ideal m of S. Hence
K =0 by Lemma Thus (1) holds. Conversely, suppose that (1) holds. Take
any q C S lying over p C R. Take any module N over R,. Then by assumption
Ker(M @ g N — M’ ®g N) = 0. Hence by the formulae above and the fact that
N = N, we see that Ker(My ®g, N — My ®g, N) = 0. In other words (4) holds.
Of course (4) = (5) is immediate. Hence (1), (4) and (5) are all equivalent. We
omit the proof of the other equivalences. ([

Lemma 82.13. Let ¢ : A — B be a ring map. Let S C A and S’ C B be
multiplicative subsets such that ¢(S) C S’. Let M — M’ be a map of B-modules.
(1) If M — M’ is universally injective as a map of A-modules, then (S')"*M —
(S") M’ is universally injective as a map of A-modules and as a map of
S~ A-modules.
(2) If M and M’ are (S')~'B-modules, then M — M’ is universally injective
as a map of A-modules if and only if it is universally injective as a map of
S—1A-modules.

Proof. You can prove this using Lemma [82.12| but you can also prove it directly as
follows. Assume M — M’ is A-universally injective. Let @ be an A-module. Then
Q®aM — Q®4 M’ is injective. Since localization is exact we see that (S") 1 (Q®4
M) — (8)71(Q ®a M') is injective. As (8")71(Q ®a M) = Q ®4 (S')"*M and
similarly for M’ we see that Q ®4 (S")"'M — Q ®4 (")~ M’ is injective, hence
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(S")"*M — (S")"1M’ is universally injective as a map of A-modules. This proves
the first part of (1). To see (2) we can use the following two facts: (a) if @ is an
S~1 A-module, then Q®4 S~ 'A = @, i.e., tensoring with @ over A is the same thing
as tensoring with Q over S™1A, (b) if M is any A-module on which the elements
of S are invertible, then M ®4 Q = M ®g-14 S1Q. Part (2) follows from this
immediately. (|

Lemma 82.14. Let R be a ring and let M — M’ be a map of R-modules. If M’
is flat, then M — M’ is universally injective if and only if M/IM — M'/IM’ is
injective for every finitely generated ideal I of R.

Proof. It suffices to show that M ®r Q@ — M’ ®g Q is injective for every finite
R-module @, see Theorem [82.3] Then @ has a finite filtration 0 = Qo C Q1 C
... C @, = @Q by submodules whose subquotients are isomorphic to cyclic modules
R/I;, see Lemma Since M’ is flat, we obtain a filtration

MRQ —=MRQs— ... — MRQ

l | l

MQ“—— M Q.. “—>M®Q

of M’ ® g @ by submodules M’ ® r Q; whose successive quotients are M’ @ g R/I; =
M'/I;M’'. A simple induction argument shows that it suffices to check M/I;M —
M'/I; M’ is injective. Note that the collection of finitely generated ideals I} C I;
is a directed set. Thus M/I;M = colim M/I/M is a filtered colimit, similarly for
M’, the maps M/I/M — M'/I!M' are injective by assumption, and since filtered
colimits are exact (Lemma we conclude. (]

83. Descent for finite projective modules

In this section we give an elementary proof of the fact that the property of being a
finite projective module descends along faithfully flat ring maps. The proof does not
apply when we drop the finiteness condition. However, the method is indicative of
the one we shall use to prove descent for the property of being a countably generated
projective module—see the comments at the end of this section.

Lemma 83.1. Let M be an R-module. Then M is finite projective if and only if
M s finitely presented and flat.

Proof. This is part of Lemma [78.2] However, at this point we can give a more
elegant proof of the implication (1) = (2) of that lemma as follows. If M is finitely
presented and flat, then take a surjection R — M. By Lemma [B1.3] applied to
P = M, the map R" — M admits a section. So M is a direct summand of a free
module and hence projective. (I

Here are some properties of modules that descend.

Lemma 83.2. Let R — S be a faithfully flat ring map. Let M be an R-module.
Then
(1) if the S-module M ®pg S is of finite type, then M is of finite type,
(2) if the S-module M ®gr S is of finite presentation, then M is of finite pre-
sentation,

(3) if the S-module M ®g S is flat, then M is flat, and
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(4) add more here as needed.

Proof. Assume M ®pg S is of finite type. Let y1,.. .,y be generators of M @ S
over S. Write y; = > ; ® f; for some x1,...,x, € M. Then we see that the map
 : R®" — M has the property that ¢ @ idg : S — M ®pr S is surjective. Since
R — S is faithfully flat we see that ¢ is surjective, and M is finitely generated.

Assume M ®pg S is of finite presentation. By (1) we see that M is of finite type.
Choose a surjection R®" — M and denote K the kernel. As R — S is flat we see
that K ®g S is the kernel of the base change S — M ®@r S. As M ®r S is of
finite presentation we conclude that K ®g S is of finite type. Hence by (1) we see
that K is of finite type and hence M is of finite presentation.

Part (3) is Lemma [39.8] O

Proposition 83.3. Let R — S be a faithfully flat ring map. Let M be an R-
module. If the S-module M ®@pg S is finite projective, then M 1is finite projective.

Proof. Follows from Lemmas and [83.2 O

The next few sections are about removing the finiteness assumption by using dévis-
sage to reduce to the countably generated case. In the countably generated case,
the strategy is to find a characterization of countably generated projective modules
analogous to Lemma [83.1] and then to prove directly that this characterization
descends. We do this by introducing the notion of a Mittag-Leffler module and
proving that if a module M is countably generated, then it is projective if and only
if it is flat and Mittag-Leffler (Theorem . When M is finitely generated, this
statement reduces to Lemma m (since, according to Example (1), a finitely
generated module is Mittag-Leffler if and only if it is finitely presented).

84. Transfinite dévissage of modules

In this section we introduce a dévissage technique for decomposing a module into a
direct sum. The main result is that a projective module is a direct sum of countably
generated modules (Theorem below). We follow [Kap58].

Definition 84.1. Let M be an R-module. A direct sum dévissage of M is a family
of submodules (My)acs, indexed by an ordinal S and increasing (with respect to
inclusion), such that:

(0) My = 0;

(2) if a € S is a limit ordinal, then Mo = Uz, Mp;

(3) if a+1 €8, then M, is a direct summand of M,1.
If moreover

(4) My41/M, is countably generated for a« +1 € S,

then (M, )aes is called a Kaplansky dévissage of M.
The terminology is justified by the following lemma.

Lemma 84.2. Let M be an R-module. If (My)aes ts a direct sum dévissage of
M, then M =@, 1cg May1/Ma.
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Proof. By property (3) of a direct sum dévissage, there is an inclusion My41/My —
M for each a € S. Consider the map

f @aHEs Myy1 /My — M

given by the sum of these inclusions. Further consider the restrictions

fs: @aﬂgﬂ M1 /My — M

for B € S. Transfinite induction on S shows that the image of f3 is Mg. For 3 =0
this is true by (0). If 8+ 1 is a successor ordinal and it is true for 3, then it is true
for B+ 1 by (3). And if 5 is a limit ordinal and it is true for o < 3, then it is true
for 8 by (2). Hence f is surjective by (1).

Transfinite induction on S also shows that the restrictions fg are injective. For
B = 01t is true. If 341 is a successor ordinal and f3 is injective, then let x be in the
kernel and write = (a41)a+1<p+1 in terms of its components xq41 € Mat1/Ma.
By property (3) and the fact that the image of fz is Mg both (zat1)at1<s and
2341 map to 0. Hence zg; = 0 and, by the assumption that the restriction fz is
injective also 441 = 0 for every o +1 < 5. So x = 0 and fgy; is injective. If
is a limit ordinal consider an element x of the kernel. Then z is already contained
in the domain of f, for some a < 5. Thus x = 0 which finishes the induction. We
conclude that f is injective since f3 is for each g € S. (]

Lemma 84.3. Let M be an R-module. Then M is a direct sum of countably
generated R-modules if and only if it admits a Kaplansky dévissage.

Proof. The lemma takes care of the “if” direction. Conversely, suppose M =
@, Ni where each N; is a countably generated R-module. Well-order I so that
we can think of it as an ordinal. Then setting M; = @ j<i{V; gives a Kaplansky
dévissage (M;);cr of M. O

Theorem 84.4. Suppose M is a direct sum of countably generated R-modules. If
P is a direct summand of M, then P is also a direct sum of countably generated
R-modules.

Proof. Write M = P & . We are going to construct a Kaplansky dévissage
(My)acs of M which, in addition to the defining properties (0)-(4), satisfies:

(5) Each M, is a direct summand of M;

(6) M, = P, ® Qq, where P, = PN M, and Q = Q N M,.
(Note: if properties (0)-(2) hold, then in fact property (3) is equivalent to property
(5).)
To see how this implies the theorem, it is enough to show that (P,).cs forms a
Kaplansky dévissage of P. Properties (0), (1), and (2) are clear. By (5) and (6)
for (M,,), each P, is a direct summand of M. Since P, C P,41, this implies P, is
a direct summand of P,1; hence (3) holds for (P, ). For (4), note that

Ma+1/Ma = a+1/Pa S7] Qa+1/Qa;
80 Py41/ P, is countably generated because this is true of My11/M,.

It remains to construct the M,. Write M = ®ie 1 INV; where each NN; is a countably
generated R-module. Choose a well-ordering of I. By transfinite recursion we are
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going to define an increasing family of submodules M, of M, one for each ordinal
a, such that M, is a direct sum of some subset of the N;.

For ao = 0 let My = 0. If o is a limit ordinal and Mg has been defined for all 8 < a,
then define My = (Js_,, M. Since each My for f < a is a direct sum of a subset
of the N;, the same will be true of M,. If o+ 1 is a successor ordinal and M,
has been defined, then define M, as follows. If M, = M, then let My,11 = M.
If not, choose the smallest j € I such that NV; is not contained in M,. We will
construct an infinite matrix (), m,n = 1,2,3,... such that:

(1) N; is contained in the submodule of M generated by the entries ,,;

(2) if we write any entry xps in terms of its P- and @Q-components, xp, =
Yke + ke, then the matrix (z,,,) contains a set of generators for each N;
for which yis or zxe has nonzero component.

Then we define M,11 to be the submodule of M generated by M, and all x,,;
by property (2) of the matrix (2,y), Ma41 will be a direct sum of some subset of
the N;. To construct the matrix (zm,n), let 211, 12,213, ... be a countable set of
generators for N;. Then if 11 = y11 + 211 is the decomposition into P- and Q-
components, let xa1, X292, Ta3, ... be a countable set of generators for the sum of the
N; for which 11 or z1; have nonzero component. Repeat this process on x12 to get
elements 31, T32, ..., the third row of our matrix. Repeat on z2; to get the fourth
row, on x13 to get the fifth, and so on, going down along successive anti-diagonals
as indicated below:

i1 X122 T13 T4

Ve Ve Ve
21 T22 X23 cee
Ve Ve
31  X32
Ve
T41 .

Transfinite induction on I (using the fact that we constructed M, to contain N;
for the smallest j such that N; is not contained in M, ) shows that for each i € I,
N, is contained in some M,. Thus, there is some large enough ordinal S satisfying:
for each i € I there is @ € S such that N; is contained in M,,. This means (M, )acs
satisfies property (1) of a Kaplansky dévissage of M. The family (M, )qcs moreover
satisfies the other defining properties, and also (5) and (6) above: properties (0),
(2), (4), and (6) are clear by construction; property (5) is true because each M,
is by construction a direct sum of some N;; and (3) is implied by (5) and the fact
that Ma - M(x+1- [l

As a corollary we get the result for projective modules stated at the beginning of
the section.

Theorem 84.5. If P is a projective R-module, then P is a direct sum of countably
generated projective R-modules.

Proof. A module is projective if and only if it is a direct summand of a free module,
so this follows from Theorem B4.4] O
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85. Projective modules over a local ring

In this section we prove a very cute result: a projective module M over a local ring
is free (Theorem below). Note that with the additional assumption that M is
finite, this result is Lemma In general we have:

Lemmal85.1. Let R be a ring. Then every projective R-module is free if and only
if every countably generated projective R-module is free.

Proof. Follows immediately from Theorem (Il
Here is a criterion for a countably generated module to be free.

Lemmal 85.2. Let M be a countably generated R-module with the following prop-
erty: if M = N ® N' with N’ a finite free R-module, then any element of N is
contained in a free direct summand of N. Then M is free.

Proof. Let z1,z2,... be a countable set of generators for M. We inductively
construct finite free direct summands Fi, F5, ... of M such that for all n we have
that F1 @ ... ® F, is a direct summand of M which contains z1,...,z,. Namely,

given F1, ..., F, with the desired properties, write
M=F&®..0F,®N

and let x € N be the image of x,41. Then we can find a free direct summand
F,+1 C N containing = by the assumption in the statement of the lemma. Of course
we can replace Fj, 1 by a finite free direct summand of F}, {1 and the induction step
is complete. Then M = @;2, F; is free. O

Lemma 85.3. Let P be a projective module over a local ring R. Then any element
of P is contained in a free direct summand of P.

Proof. Since P is projective it is a direct summand of some free R-module F, say
F=P®Q. Let x € P be the element that we wish to show is contained in a free
direct summand of P. Let B be a basis of F' such that the number of basis elements
needed in the expression of x is minimal, say x = Z?:l a;e; for some e; € B and
a; € R. Then no a; can be expressed as a linear combination of the other a;; for if
aj; = Z#j a;b; for some b; € R, then replacing e; by e; + bse; for ¢ # j and leaving
unchanged the other elements of B, we get a new basis for F' in terms of which z
has a shorter expression.

Let ¢, = y; + z,y; € P,z; € @ be the decomposition of e; into its P- and Q-
components. Write y; = Z;”Zl bije;+t;, where t; is a linear combination of elements
in B other than eq,...,e,. To finish the proof it suffices to show that the matrix
(bi;) is invertible. For then the map F' — F sending e; — y; for ¢ = 1,...,n
and fixing B\ {e1,...,e,} is an isomorphism, so that yi,...,y, together with
B\ {ei,...,en} form a basis for F. Then the submodule N spanned by y1,...,yn
is a free submodule of P; N is a direct summand of P since N C P and both N
and P are direct summands of F'; and z € N since x € P implies x = Z?:l a;e; =

Z?:l ;Y-
Now we prove that (b;;) is invertible. Plugging y; = 2?21 bijej+t;into Y | ae; =

n . . . n
> i1 aiy; and equating the coefficients of e; gives a; = >, a;b;;. But as noted
above, our choice of B guarantees that no a; can be written as a linear combination

of the other a;. Thus b;; is a non-unit for ¢ # j, and 1 — b;; is a non-unit—so in
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particular b;; is a unit—for all ¢. But a matrix over a local ring having units along
the diagonal and non-units elsewhere is invertible, as its determinant is a unit. [J

Theorem 85.4. If P is a projective module over a local ring R, then P is free.

Proof. Follows from Lemmas [85.1} |85.2] and |85.3] O

86. Mittag-Leffler systems

The purpose of this section is to define Mittag-Leffler systems and why this is a
useful notion.

In the following, I will be a directed set, see Categories, Definition Let
(Ai,pji + Aj — A;) be an inverse system of sets or of modules indexed by I, see
Categories, Definition This is a directed inverse system as we assumed [
directed (Categories, Definition 21.4). For each i € I, the images ¢;;(A;) C A;
for j > i form a decreasing directed family of subsets (or submodules) of A;. Let
Ai = j»ipji(A4j). Then pj;(A}) C A} for j > i, hence by restricting we get
a directed inverse system (A7, ¢j;] A;). From the construction of the limit of an
inverse system in the category of sets or modules, we have lim A; = lim A;. The
Mittag-Leffler condition on (A;, ¢;;) is that A} equals ¢;;(A;) for some j > i (and
hence equals pg;(Ag) for all k > j):

Definition 86.1. Let (A;,¢;;) be a directed inverse system of sets over I. Then
we say (A;, ;i) is Mittag-Leffler if for each i € I, the family ¢;;(A4;) C A, for j >
stabilizes. Explicitly, this means that for each ¢ € I, there exists j > ¢ such that
for k > j we have g (Ar) = @;i(A4;). If (A;, ;i) is a directed inverse system of
modules over a ring R, we say that it is Mittag-Leffler if the underlying inverse
system of sets is Mittag-Leffler.

Example 86.2. If (A4;,¢;;) is a directed inverse system of sets or of modules and
the maps ¢;; are surjective, then clearly the system is Mittag-Leffler. Conversely,
suppose (A;, ¢;i) is Mittag-Leffler. Let A} C A; be the stable image of ¢;;(A4;) for
j > 1. Then <,0j¢|A; : Al — Aj is surjective for j > i and lim A; = lim A]. Hence
the limit of the Mittag-LefHler system (A;, ¢;;) can also be written as the limit of a
directed inverse system over I with surjective maps.

Lemma| 86.3. Let (A;,¢j;) be a directed inverse system over I. Suppose I is
countable. If (A;,pji) is Mittag-Leffler and the A; are nonempty, then lim A; is
nonempty.

Proof. Let iy,i2,13,... be an enumeration of the elements of I. Define inductively
a sequence of elements j, € I for n = 1,2,3,... by the conditions: j; = iy, and
jn = i, and j, > jm for m < n. Then the sequence j, is increasing and forms a
cofinal subset of I. Hence we may assume I = {1,2,3,...}. So by Example we
are reduced to showing that the limit of an inverse system of nonempty sets with
surjective maps indexed by the positive integers is nonempty. This is obvious. [

The Mittag-Leffler condition will be important for us because of the following ex-
actness property.

Lemma 86.4. Let
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be an exact sequence of directed inverse systems of abelian groups over I. Suppose
I is countable. If (A;) is Mittag-Leffler, then

is exact.

Proof. Taking limits of directed inverse systems is left exact, hence we only need
to prove surjectivity of lim B; — lim C;. So let (¢;) € im C;. For each i € I, let
b, = gi_l(ci), which is nonempty since g; : B; — C; is surjective. The system of
maps ¢j; : B = B; for (B;) restrict to maps E; — E; which make (E;) into an
inverse system of nonempty sets. It is enough to show that (F;) is Mittag-Leffler.
For then Lemma would show lim E; is nonempty, and taking any element of
lim E; would give an element of lim B; mapping to (¢;).

By the injection f; : A; — B; we will regard A; as a subset of B;. Since (A4;) is
Mittag-Leffler, if ¢ € I then there exists j > ¢ such that ¢gi(Ar) = ¢;i(4;) for
k> j. We claim that also @i (Ex) = ¢j:(E;) for k > j. Always ¢ri(Er) C ¢ji(E;)
for £ > j. For the reverse inclusion let e; € Ej;, and we need to find z € Ej such
that @ri(xr) = @ji(e;). Let e}, € Ei be any element, and set e;- = ¢y;(e},). Then
gjlej —¢€}) =cj —c; =0, hence e; — €} = a; € A;. Since pr;(Ax) = ¢;i(A;), there
exists ar € Ay such that ¢p;(ar) = pji(a;). Hence

ori(er, + ar) = @ji(e)) + wjila;) = wjile;),

so we can take zy = €}, + ay. O

87. Inverse systems

In many papers (and in this section) the term inverse system is used to indicate
an inverse system over the partially ordered set (IN,>). We briefly discuss such
systems in this section. This material will be discussed more broadly in Homology,
Section Suppose we are given a ring R and a sequence of R-modules

My <22 My <22 M3+ ...

with maps as indicated. By composing successive maps we obtain maps y;; : M; —
M, whenever 7 > i’ such that moreover @;;» = @i 0 s whenever 1 > i’ > i,
Conversely, given the system of maps ;;» we can set ¢; = ;;_1) and recover the
maps displayed above. In this case

compare with Categories, Section As explained in Homology, Section [31] this is
actually a limit in the category of R-modules, as defined in Categories, Section

Lemma 87.1. Let R be a ring. Let 0 — K; — L; — M; — 0 be short exact
sequences of R-modules, i > 1 which fit into maps of short exact sequences

0 K; L, M; 0

T

0 —— Kip1 Litq M1 0
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If for every i there exists a ¢ = c(i) > ¢ such that Im(K,. — K;) = Im(K; — K;)
for all 7 > ¢, then the sequence
0—=>limK; - limL; > limM; — 0

is exact.

Proof. This is a special case of the more general Lemma O

88. Mittag-Lefler modules

A Mittag-Leffler module is (very roughly) a module which can be written as a
directed limit whose dual is a Mittag-Leffler system. To be able to give a precise
definition we need to do a bit of work.

Definition 88.1. Let (M, f;;) be a directed system of R-modules. We say that
(M, fij) is a Mittag-Leffler directed system of modules if each M; is an R-module
of finite presentation and if for every R-module IV, the inverse system

(HOHIR(M,L‘, N), HOIHR(fij, N))
is Mittag-Leffler.

We are going to characterize those R-modules that are colimits of Mittag-Leffler
directed systems of modules.

Definition 88.2. Let f: M — N and g : M — M’ be maps of R-modules. Then
we say g dominates f if for any R-module @, we have Ker(f®pidg) C Ker(¢®gidg).

It is enough to check this condition for finitely presented modules.

Lemmal 88.3. Let f: M — N and g: M — M’ be maps of R-modules. Then g
dominates f if and only if for any finitely presented R-module Q, we have Ker(f®p
idg) C Ker(g ®g idg).

Proof. Suppose Ker(f ®ridg) C Ker(g ®@ridg) for all finitely presented modules
Q. If Q is an arbitrary module, write () = colim;c; QQ; as a colimit of a directed
system of finitely presented modules @;. Then Ker(f ®g idg,) C Ker(g ®r idg,)
for all 7. Since taking directed colimits is exact and commutes with tensor product,
it follows that Ker(f @gidg) C Ker(g ®g idg). O

Lemmal 88.4. Let f: M — N and g: M — M’ be maps of R-modules. Consider
the pushout of f and g,

M 4f> N

|

M/ $ N/
Then g dominates [ if and only if ' is universally injective.

Proof. Recall that N’ is M’ & N modulo the submodule consisting of elements
(9(x),—f(z)) for x € M. From the construction of N’ we have a short exact
sequence

0 — Ker(f) NKer(g) — Ker(f) — Ker(f") — 0.
Since tensoring commutes with taking pushouts, we have such a short exact se-
quence

0 — Ker(f ®idg) NKer(g ® idg) — Ker(f ® idg) — Ker(f’ ®idg) — 0
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for every R-module Q. So f’ is universally injective if and only if Ker(f ® idg) C
Ker(g ®idg) for every @, if and only if g dominates f. O

The above definition of domination is sometimes related to the usual notion of
domination of maps as the following lemma shows.

Lemmal 88.5. Let f: M — N and g : M — M’ be maps of R-modules. Suppose
Coker(f) is of finite presentation. Then g dominates [ if and only if g factors
through f, i.e. there exists a module map h: N — M’ such that g = ho f.

Proof. Consider the pushout of f and g as in the statement of Lemma [88:4] From
the construction of the pushout it follows that Coker(f’) = Coker(f), so Coker(f’)
is of finite presentation. Then by Lemma f! is universally injective if and only
if
0— M L5 N — Coker(f') — 0

splits. This is the case if and only if there is a map h' : N’ — M’ such that
h' o f' = idy. From the universal property of the pushout, the existence of such
an h' is equivalent to g factoring through f. (I

Proposition 88.6. Let M be an R-module. Let (M;, f;;) be a directed system of
finitely presented R-modules, indexed by I, such that M = colim M;. Let f; : M; —
M be the canonical map. The following are equivalent:

(1) For every finitely presented R-module P and module map f : P — M, there
exists a finitely presented R-module Q and a module map g : P — @ such
that g and f dominate each other, i.e., Ker(f ®p idy) = Ker(g ®pg idy) for
every R-module N.

(2) For each i € I, there exists j > i such that f;; : M; — M; dominates

(3) For each i € I, there exists j > i such that f;; : M; — M; factors through
fik : M; — My, for all k > 1.

(4) For every R-module N, the inverse system (Hompg(M;, N),Hompg(f;j, N))
is Mittag-Leffler.

(5) For N = [[,c; Ms, the inverse system (Homp(M;, N), Hompg(fij, N)) is
Mittag-Leffler.

Proof. First we prove the equivalence of (1) and (2). Suppose (1) holds and let
1 € I. Corresponding to the map f; : M; — M, we can choose g : M; — @ as in
(1). Since M; and @ are of finite presentation, so is Coker(g). Then by Lemma
fi : M; — M factors through g : M; — Q, say f; = hog for some h : Q — M.
Then since @ is finitely presented, h factors through M; — M for some j > i, say
h = fjoh' for some h' : Q — M;. In total we have a commutative diagram

M
VN
M’L Jij Mj
Q

Thus f;; dominates g. But g dominates f;, so f;; dominates f;.
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Conversely, suppose (2) holds. Let P be of finite presentation and f : P — M a
module map. Then f factors through f; : M; — M for some i € I, say f = fiog’
for some g’ : P — M;. Choose by (2) a j > i such that f;; dominates f;. We have
a commutative diagram

f

— M

I/ :

From the diagram and the fact that fij dominates f;, we find that f and f;; o ¢’
dominate each other. Hence taking g = f;; o ¢’ : P — M, works.

Next we prove (2) is equivalent to (3). Let i € I. It is always true that f; dominates
fir. for k > i, since f; factors through f;;. If (2) holds, choose j > i such that f;;
dominates f;. Then since domination is a transitive relation, f;; dominates f;; for
k > 4. All M; are of finite presentation, so Coker(f;) is of finite presentation for
k > i. By Lemma fij factors through f; for all k& > 4. Thus (2) implies
(3). On the other hand, if (3) holds then for any R-module N, f;; ®r idy factors
through f;; @gidy for k > 4. So Ker(fi, ®gidy) C Ker(fi; ®gidy) for k > i. But
Ker(f; ®p idy : M; ®g N = M ®p N) is the union of Ker(f;, ®p idy) for k > 1.
Thus Ker(f; ®g idn) C Ker(f;; ®pg idy) for any R-module N, which by definition
means f;; dominates f;.

It is trivial that (3) implies (4) implies (5). We show (5) implies (3). Let N =
[I,c; M. If (5) holds, then given i € I choose j > i such that
Im(Hom(M;, N) — Hom(M;, N)) = Im(Hom(Mj, N) — Hom(M;, N))

for all k£ > j. Passing the product over s € I outside of the Hom’s and looking at
the maps on each component of the product, this says

Im(Hom(M;, M) — Hom(M;, M,)) = Im(Hom(My, M) — Hom(M;, My))
for all k > j and s € I. Taking s = j we have

IIIl(HOIIl(]\4j7 MJ) — HOIIl(]\4i7 MJ)) = Im(Hom(Mk, M]) — HOIH(Mi, M]))

for all k& > j. Since f;; is the image of id € Hom(Mj, M;) under Hom(M;, M;) —
Hom(M;, M;), this shows that for any k > j there is h € Hom(M},, M;) such that
fij = ho fig. If j > k then we can take h = fi;. Hence (3) holds. O

Definition 88.7. Let M be an R-module. We say that M is Mittag-Leffler if the
equivalent conditions of Proposition hold.

In particular a finitely presented module is Mittag-Leffler.

Remark| 88.8. Let M be a flat R-module. By Lazard’s theorem (Theorem
we can write M = colim M; as the colimit of a directed system (M, f;;) where
the M; are free finite R-modules. For M to be Mittag-Leffler, it is enough for the
inverse system of duals (Hompg(M;, R), Hompg(f;j, R)) to be Mittag-Leffler. This
follows from criterion (4) of Proposition and the fact that for a free finite R-
module F, there is a functorial isomorphism Hompg(F, R) @ g N = Hompg(F, N) for
any R-module N.
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Lemma 88.9. If R is a ring and M, N are Mittag-Leffler modules over R, then
M ®gr N is a Mittag-Leffler module.

Proof. Write M = colim;e; M; and N = colimjc; IN; as directed colimits of
finitely presented R-modules. Denote fi;;r : M; — M; and g;;; : Nj — Njs the
transition maps. Then M; ®pr N; is a finitely presented R-module (see Lemma
, and M ®@r N = colim; jyerxg M; ®g M;. Pick (i,7) € I x J. By the defini-
tion of a Mittag-Leffler module we have Proposition (3) for both systems. In
other words there exist i > i and j’ > j such that for every choice of i > i and
j" > j there exist maps a : M;» — M; and b : Mj» — M;: such that fi;y = ao fin
and g;;» = bog; . Then it is clear that a®b : M;» ®g N;j» — M;» @ N serves the
same purpose for the system (M; ® g Nj, fiir ® g;57). Thus by the characterization
Proposition [88.6] (3) we conclude that M @g N is Mittag-Leffler. O

Lemma 88.10. Let R be a ring and M an R-module. Then M is Mittag-Leffler
if and only if for every finite free R-module F' and module map f : F — M, there
exists a finitely presented R-module QQ and a module map g : F — Q such that g and
f dominate each other, i.e., Ker(f ®g idy) = Ker(g ®g idy) for every R-module
N.

Proof. Since the condition is clear weaker than condition (1) of Proposition [88.6]
we see that a Mittag-Leffler module satisfies the condition. Conversely, suppose
that M satisfies the condition and that f : P — M is an R-module map from
a finitely presented R-module P into M. Choose a surjection F' — P where F
is a finite free R-module. By assumption we can find a map F' — @ where @
is a finitely presented R-module such that FF — @ and F — M dominate each
other. In particular, the kernel of F' — () contains the kernel of F' — P, hence we
obtain an R-module map g : P — @ such that F' — @ is equal to the composition
F — P — Q. Let N be any R-module and consider the commutative diagram

Fr N ——Q®grN

L

PRr N —— M ®r N

By assumption the kernels of FQr N — Q®Rr N and FQr N - M ®@pg N are equal.
Hence, as F ®zr N — P ®p N is surjective, also the kernels of PRr N - Q @r N
and PQr N — M ®r N are equal. [l

Lemma 88.11. Let R — S be a finite and finitely presented ring map. Let M be
an S-module. If M is a Mittag-Leffler module over S then M is a Mittag-Leffler
module over R.

Proof. Assume M is a Mittag-Leffler module over S. Write M = colim M; as a
directed colimit of finitely presented S-modules M;. As M is Mittag-Leffler over S
there exists for each ¢ an index j > 4 such that for all k¥ > j there is a factorization
fij = ho fir (where h depends on i, the choice of j and k). Note that by Lemma
the modules M, are also finitely presented as R-modules. Moreover, all the
maps fij, fik, h are maps of R-modules. Thus we see that the system (M, f;;)
satisfies the same condition when viewed as a system of R-modules. Thus M is
Mittag-Leffler as an R-module. (]
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Lemma 88.12. Let R be a ring. Let S = R/I for some finitely generated ideal I.
Let M be an S-module. Then M is a Mittag-Leffler module over R if and only if
M is a Mittag-Leffler module over S.

Proof. One implication follows from Lemma To prove the other, assume
M is Mittag-Leffler as an R-module. Write M = colim M; as a directed colimit
of finitely presented S-modules. As [ is finitely generated, the ring S is finite and
finitely presented as an R-algebra, hence the modules M; are finitely presented
as R-modules, see Lemma [36.23] Next, let N be any S-module. Note that for
each ¢ we have Hompg(M;, N) = Homg(M;, N) as R — S is surjective. Hence the
condition that the inverse system (Hompg(M;, N)); satisfies Mittag-Leffler, implies
that the system (Homg(M;, N)); satisfies Mittag-Leffler. Thus M is Mittag-Leffler
over S by definition. O

Remark| 88.13. Let R — S be a finite and finitely presented ring map. Let M
be an S-module which is Mittag-Leffler as an R-module. Then it is in general not
the case that M is Mittag-Leffler as an S-module. For example suppose that S is
the ring of dual numbers over R, i.e., S = R ® Re with €2 = 0. Then an S-module
consists of an R-module M endowed with a square zero R-linear endomorphism
€ : M — M. Now suppose that My is an R-module which is not Mittag-Leffler.
Choose a presentation Fy — Fy — My — 0 with F} and Fy free R-modules. Set

M:Fl@F()With
e:(o O):M—>M.
u 0

Then M/eM = F; @& My is not Mittag-Leffler over R = S/eS, hence not Mittag-
Leffler over S (see Lemma [88.12)). On the other hand, M/eM = M ®g S/eS which
would be Mittag-Leffler over S if M was, see Lemma [88.9]

89. Interchanging direct products with tensor

Let M be an R-module and let (Q4)aca be a family of R-modules. Then there
is a canonical map M ®p (HQGA Qa) = [laca(M ®R Qa) given on pure tensors
by  ® (¢a) — (z ® go). This map is not necessarily injective or surjective, as the
following example shows.

Example 89.1. Take R = Z, M = Q, and consider the family @, = Z/n for
n > 1. Then [[,,(M ® @Q,) = 0. However there is an injection Q — M ® (], @n)
obtained by tensoring the injection Z — [],, @, by M, so M ® (]],, @») is nonzero.
Thus M @ ([],, Qn) — [],,(M ® Q) is not injective.

On the other hand, take again R = Z, M = Q, and let Q,, = Z for n > 1. The
image of M ® ([[,, @») = [[,,(M ® Q) = [1,, M consists precisely of sequences of
the form (a,/m),>1 with a, € Z and m some nonzero integer. Hence the map is
not surjective.

We determine below the precise conditions needed on M for the map M ®pg
(I, Qa) = [[.,(M ®r Q.) to be surjective, bijective, or injective for all choices of
(Qa)aca- This is relevant because the modules for which it is injective turn out to
be exactly Mittag-Leffler modules (Proposition . In what follows, if M is an
R-module and A a set, we write M for the product [], ., M.

Proposition 89.2. Let M be an R-module. The following are equivalent:
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(1) M is finitely generated.

(2) For every family (Qa)aca of R-modules, the canonical map M®@g([], Qo) —
[[.(M ®r Q) is surjective.

(3) For every R-module Q and every set A, the canonical map M Qg Q4 —
(M ®r Q)4 is surjective.

(4) For every set A, the canonical map M ®r R* — M4 is surjective.

Proof. First we prove (1) implies (2). Choose a surjection R™ — M and consider
the commutative diagram

R" @ ([T, Qa) — [1.(R" ®r Qa)

l |

M ®@r (Ha Qa) — Ha(M R Qa)

The top arrow is an isomorphism and the vertical arrows are surjections. We
conclude that the bottom arrow is a surjection.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). In fact
for (1) to hold it suffices that the element d = (z),cpr of MM is in the image of
the map f: M ®r RM — MM In this case d = Y, f(2; ® a;) for some z; € M
and a; € RM. If for x € M we write p, : MM — M for the projection onto the
z-th factor, then

z = py(d) = Zi:l pa(f(2 ®a;)) = Zi:l pa(ai)zi.

Thus z1,...,x, generate M. ([

Proposition 89.3. Let M be an R-module. The following are equivalent:

(1) M is finitely presented.

(2) For every family (Qa)aca of R-modules, the canonical map M®@g([], Qo) —
[[.(M ®r Q) is bijective.

(3) For every R-module Q and every set A, the canonical map M Qg Q4 —
(M ®r Q) is bijective.

(4) For every set A, the canonical map M ®r RA — M4 is bijective.

Proof. First we prove (1) implies (2). Choose a presentation R™ — R" — M and
consider the commutative diagram

R™ @g ([[, Qo) —= R" ®r ([[, Qa) —= M @r ([[, @a) —=0

| - |

Ha(Rm ®R Qa) — Ha(Rn ®R Qa) — Ha(M ®R QO‘) - 0

1R

The first two vertical arrows are isomorphisms and the rows are exact. This implies
that the map M ®g ([[, Qo) = [[,(M ®r Qq) is surjective and, by a diagram
chase, also injective. Hence (2) holds.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). From
Proposition m if (4) holds we already know that M is finitely generated. So we
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can choose a surjection ' — M where F is free and finite. Let K be the kernel. We
must show K is finitely generated. For any set A, we have a commutative diagram

K®@rR*——F®rR*——= M®rR*——=0

N A

0 K4 FA MA 0.
The map f; is an isomorphism by assumption, the map fs is a isomorphism since
F' is free and finite, and the rows are exact. A diagram chase shows that fs is
surjective, hence by Proposition [89.2] we get that K is finitely generated. O

We need the following lemma for the next proposition.

Lemma 89.4. Let M be an R-module, P a finitely presented R-module, and
f: P — M amap. Let Q be an R-module and suppose x € Ker(P® Q — M ® Q).
Then there exists a finitely presented R-module P’ and a map f' : P — P’ such
that f factors through f' and v € Ker(P® Q — P' ® Q).

Proof. Write M as a colimit M = colim;c; M; of a directed system of finitely
presented modules M;. Since P is finitely presented, the map f : P — M factors
through M; — M for some j € I. Upon tensoring by ¢ we have a commutative
diagram

M; ®Q

TN

P®Q M®Q.
The image y of  in M; ® @ is in the kernel of M; ® @ — M ® Q. Since M ® Q) =
colim;er(M; ® @), this means y maps to 0 in M;» ® @ for some j° > j. Thus we
may take P’ = Mj and f’ to be the composite P — M; — M. O

Proposition 89.5. Let M be an R-module. The following are equivalent:
(1) M is Mittag-Leffler.
(2) For every family (Qa)aca of R-modules, the canonical map M®@g([], Qa) —
[, (M ®r Qq) is injective.

Proof. First we prove (1) implies (2). Suppose M is Mittag-Leffler and let x
be in the kernel of M ®gr ([, Qa) — [[.(M ®r Qo). Write M as a colimit
M = colim;c; M; of a directed system of finitely presented modules M;. Then
M ®g ([], Qa) is the colimit of M; ®g ([[, Qa)- So x is the image of an element
x; € M; ®g ([[, Qo). We must show that 2; maps to 0 in M; ®g (][], Qa) for some
j > 4. Since M is Mittag-Leffler, we may choose j > ¢ such that M; — M; and
M; — M dominate each other. Then consider the commutative diagram

M @g ([, Qa) ——I1,(M ®r Qa)

! T

M; @r ([1, Qa) — [[.(M; ®r Qq)

|

M; &g ([1, Qo) — 1. (M; ®r Qa)
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whose bottom two horizontal maps are isomorphisms, according to Proposition

Since x; maps to 0 in [[ (M ®r Qa), its image in [ (M; ®r Qo) is in the

kernel of the map [] (M; ®r Qo) — [[,(M ®r Qo). But this kernel equals the
kernel of [ (M; ®r Qa) — [[,(M; ®r Qq) according to the choice of j. Thus z;
maps to 0 in [], (M; ®r Q) and hence to 0 in M; ®r ([, Qa)-

Now suppose (2) holds. We prove M satisfies formulation (1) of being Mittag-
Leffler from Proposition Let f: P — M be a map from a finitely presented
module P to M. Choose a set B of representatives of the isomorphism classes of
finitely presented R-modules. Let A be the set of pairs (@, z) where Q € B and
z€Ker(PRQ - M®Q). For a = (Q,z) € A, we write Q,, for @ and z, for z.
Consider the commutative diagram

M ®gr (Ha Qa) - Ha(M R Qa)

T |

Pogr (I, Qa) — [1,(P ©r Qa)

The top arrow is an injection by assumption, and the bottom arrow is an isomor-
phism by Proposition Let € P®g (][, Qa) be the element corresponding
to (zq) € [[,(P ®g Q) under this isomorphism. Then x € Ker(P ®g ([[, Qo) —
M ®g (][, Qa)) since the top arrow in the diagram is injective. By Lemma m
we get a finitely presented module P’ and a map f’: P — P’ such that f: P — M
factors through f” and = € Ker(P ®r ([[,Qa) — P' @& ([[, Qo)) We have a
commutative diagram

P ®r ([, Qa) —= 1, (P’ ®r Qa)

| |

Par (I, Q) —[1.(P ®r Qa)

where both the top and bottom arrows are isomorphisms by Proposition [89.3] Thus
since z is in the kernel of the left vertical map, (x,) is in the kernel of the right
vertical map. This means z, € Ker(P ®r Qo — P’ ®r Q.) for every a € A. By
the definition of A this means Ker(P®rQ — P'®rQ) D Ker(PR®rQ - M QrQ)
for all finitely presented @ and, since f : P — M factors through ' : P — P/,
actually equality holds. By Lemma f and f’ dominate each other. O

Lemma 89.6. Let M be a flat Mittag-Leffler module over R. Let F' be an R-
module and let x € F @r M. Then there exists a smallest submodule F' C F such
that v € F' @r M. Also, F' is a finite R-module.

Proof. Since M is flat we have F g M C F ®r M if F/ C F is a submodule,
hence the statement makes sense. Let I = {F' C F |z € F' ®g M} and for i € T
denote F; C F' the corresponding submodule. Then x maps to zero under the map

FaorM — |[(F/F. @r M)
whence by Proposition 89.5] z maps to zero under the map

FopM— (HF/Fi) @p M
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Since M is flat the kernel of this arrow is ([ F;) ® g M which proves that F' = () F;.
To see that F” is a finite module, suppose that z = ijlj_“’m fj ®m; with f; € F’
and m; € M. Then z € F” ®p M where F” C F' is the submodule generated by
fis-++y fm- Of course then F”" = F’" and we conclude the final statement holds. O

Lemma 89.7. Let 0 — My — My — M3 — 0 be a universally exact sequence of
R-modules. Then:

(1) If My is Mittag-Leffler, then My is Mittag-Leffiler.

(2) If My and M3 are Mittag-Leffler, then My is Mittag-Leffler.

Proof. For any family (Qs)aca of R-modules we have a commutative diagram

0 —— M; ®r ([[, Qa) —= M2 ®r ([[, Qo) — M3 ®r ([[, Qa) —=0

l | |

0 ——J[.(M1® Qo) ——[[o(M2® Qo) ——[[(M3 ® Qo) ——0
with exact rows. Thus (1) and (2) follow from Proposition [89.5] O

Lemma 89.8. Let M7 — My — M3 — 0 be an exact sequence of R-modules. If
My is finitely generated and Ms is Mittag-Leffler, then Mz is Mittag-Leffler.

Proof. For any family (Q4)aeca of R-modules, since tensor product is right exact,
we have a commutative diagram

My ®g ([1, Qo) —— M2 ®r ([1, Qo) — M3 ®r ([[, Qo) —0

| | |

[[.(M1 @ Qo) —— [0 (M2 @ Qo) ——[[(M3 @ Qo) ——0

with exact rows. By Proposition [89.2] the left vertical arrow is surjective. By
Proposition [89.5 the middle vertical arrow is injective. A diagram chase shows the
right vertical arrow is injective. Hence Mj is Mittag-Leffler by Proposition[89.5] O

Lemma 89.9. If M = colim M, is the colimit of a directed system of Mittag-Leffler
R-modules M; with universally injective transition maps, then M is Mittag-Leffier.

Proof. Let (Qa)aca be a family of R-modules. We have to show that M ®g
(JI1Q«) = JI M @rQ., is injective and we know that M; @z ([] Qo) — [ Mi®@rQa
is injective for each i, see Proposition[89.5] Since ® commutes with filtered colimits,
it suffices to show that [[ M; ®r Qo — [[ M ®r Q. is injective. This is clear as
each of the maps M; ®g Qo — M Rp Q. is injective by our assumption that the
transition maps are universally injective. (I

Lemma 89.10. If M = @, ; M; is a direct sum of R-modules, then M is Mittag-
Leffier if and only if each M; is Mittag-Leffler.

Proof. The “only if” direction follows from Lemma (1) and the fact that a
split short exact sequence is universally exact. The converse follows from Lemma
but we can also argue it directly as follows. First note that if I is finite
then this follows from Lemma W (2). For general I, if all M; are Mittag-Leffler
then we prove the same of M by verifying condition (1) of Proposition Let
f : P — M be a map from a finitely presented module P. Then f factors as
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rL DB,crr My — @,;c; M; for some finite subset I’ of I. By the finite case
@D, My is Mittag-Leffler and hence there exists a finitely presented module @
and a map ¢ : P — @Q such that g and f/ dominate each other. Then also g and f
dominate each other. O

Lemmal89.11. Let R — S be a ring map. Let M be an S-module. If S is Mittag-
Leffler as an R-module, and M is flat and Mittag-Leffler as an S-module, then M
is Mittag-Leffler as an R-module.

Proof. We deduce this from the characterization of Proposition Namely,
suppose that @, is a family of R-modules. Consider the composition

M®RHQQQZM®SS’®RHQQQ

|

M®S Ha(S ®R QQ)

|

[[.(M ®sS®r Qo) =[],(M &k Qa)

The first arrow is injective as M is flat over S and S is Mittag-Leffler over R and the
second arrow is injective as M is Mittag-Leffler over S. Hence M is Mittag-Leffler
over R. O

90. Coherent rings

We use the discussion on interchanging [ and ® to determine for which rings
products of flat modules are flat. It turns out that these are the so-called coherent
rings. You may be more familiar with the notion of a coherent Ox-module on a
ringed space, see Modules, Section

Definition 90.1. Let R be a ring. Let M be an R-module.
(1) We say M is a coherent module if it is finitely generated and every finitely
generated submodule of M is finitely presented over R.
(2) We say R is a coherent ring if it is coherent as a module over itself.

Thus a ring is coherent if and only if every finitely generated ideal is finitely pre-
sented as a module.

Example/90.2. A valuation ring is a coherent ring. Namely, every nonzero finitely
generated ideal is principal (Lemma [50.15)), hence free as a valuation ring is a
domain, hence finitely presented.

The category of coherent modules is abelian.

Lemmal 90.3. Let R be a ring.

(1) A finite submodule of a coherent module is coherent.

(2) Let ¢ : N — M be a homomorphism from a finite module to a coherent
module. Then Ker(yp) is finite, Im(p) is coherent, and Coker(yp) is coherent.

(3) Let ¢ : N — M be a homomorphism of coherent modules. Then Ker(y)
and Coker(p) are coherent modules.

(4) Given a short exact sequence of R-modules 0 — My — My — M3z — 0 if
two out of three are coherent so is the third.
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Proof. The first statement is immediate from the definition.

Let ¢ : N — M satisfy the assumptions of (2). First, Im(¢) is finite, hence coherent
by (1). In particular Im(¢) is finitely presented, so applying Lemma[5.3]to the exact
sequence 0 — Ker(p) - N — Im(¢p) — 0 we see that Ker(yp) is finite. To prove
that Coker(yp) is coherent, let E C Coker(y) be a finite subomdule, and let E’ be
its inverse image in M. From the exact sequence 0 — Ker(p) - E' — E — 0
and since Ker(y) is finite we conclude by Lemma [5.3| that E’ C M is finite, hence
finitely presented because M is coherent. The same exact sequence then shows that
F is finitely presented, whence our claim.

Part (3) follows immediately from (1) and (2).

Let 0 — M; = My £ Ms — 0 be a short exact sequence of R-modules as in (4). It
remains to prove that if M; and M3 are coherent so is M. By Lemma we see
that M, is finite. Let No C Ms be a finite submodule. Put N3 = p(N2) C M3 and
Ny =i71(Ny) C M;. We have an exact sequence 0 — Ny — Ny — N3 — 0. Clearly
N3 is finite (as a quotient of N3), hence finitely presented (as a finite submodule
of M3). It follows by Lemma (5) that Ny is finite, hence finitely presented
(as a finite submodule of M;). We conclude by Lemma (2) that My is finitely
presented. (I

Lemma 90.4. Let R be a ring. If R is coherent, then a module is coherent if and
only if it is finitely presented.

Proof. It is clear that a coherent module is finitely presented (over any ring).
Conversely, if R is coherent, then R®" is coherent and so is the cokernel of any
map R®™ — R®", see Lemma [90.3] O

Lemma 90.5. A Noetherian ring is a coherent ring.

Proof. By Lemma any finite R-module is finitely presented. In particular any
ideal of R is finitely presented. O

Proposition| 90.6. Let R be a ring. The following are equivalent

(1) R is coherent,
(2) any product of flat R-modules is flat, and
(3) for every set A the module R* is flat.

Proof. Assume R coherent, and let Q,, @ € A be a set of flat R-modules. We have
to show that I ®g [[, Qa — [[ Qa is injective for every finitely generated ideal I
of R, see Lemma Since R is coherent I is an R-module of finite presentation.
Hence I ®r [[, Qa = [II ®r Qo by Proposition W The desired injectivity
follows as I @ Qo — Q4 is injective by flatness of Q.

The implication (2) = (3) is trivial.

Assume that the R-module R4 is flat for every set A. Let I be a finitely generated
ideal in R. Then I ®z R* — R* is injective by assumption. By Proposition m
and the finiteness of I the image is equal to I*. Hence I ®p R4 = I for every set
A and we conclude that [ is finitely presented by Proposition [89.3] [

This is [Cha60l,
Theorem 2.1].
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91. Examples and non-examples of Mittag-Lefler modules

We end this section with some examples and non-examples of Mittag-Leffler mod-
ules.

059R |Example 91.1. Mittag-Lefller modules.

0598

(1) Any finitely presented module is Mittag-Leffler. This follows, for instance,
from Proposition m (1). In general, it is true that a finitely generated
module is Mittag-Leffler if and only it is finitely presented. This follows
from Propositions [89.2] [89.3] and [89.5]

(2) A free module is Mittag-Leffler since it satisfies condition (1) of Proposition
3.6l

(3) By the previous example together with Lemma projective modules
are Mittag-Leffler.

We also want to add to our list of examples power series rings over a Noetherian
ring R. This will be a consequence the following lemma.

Lemmal 91.2. Let M be a flat R-module. The following are equivalent
(1) M is Mittag-Leffler, and
(2) if F is a finite free R-module and x € F @ M, then there exists a smallest
submodule F' of F' such that v € F' @z M.

Proof. The implication (1) = (2) is a special case of Lemma Assume (2).
By Theorem @ we can write M as the colimit M = colim;c; M; of a directed
system (M, f;;) of finite free R-modules. By Remark it suffices to show that
the inverse system (Hompg(M;, R), Hompg(f;;, R)) is Mittag-Leffler. In other words,
fix i € I and for j > i let Q; be the image of Hompg(M;, R) — Hompg(M;, R); we
must show that the Q; stabilize.

Since M; is free and finite, we can make the identification Hompg(M;, M;) =
Homp(M;, R) ® g M for all j. Using the fact that the M; are free, it follows that
for j > ¢, Q; is the smallest submodule of Hompg(M;, R) such that f;; € Q; ®r M;.
Under the identification Homg(M;, M) = Hompg(M;, R) ® g M, the canonical map
fi : M; — M is in Homg(M;, R) ® g M. By the assumption on M, there exists a
smallest submodule @ of Homp(M;, R) such that f; € Q ®g M. We are going to
show that the @Q; stabilize to Q.

For j > ¢ we have a commutative diagram

Qj ®r Mj — HOIHR(Mi7R) ®r Mj

| |

Qj ®pr M —— Hompg(M;, R) ®r M.
Since f;; € Q; ®r M; maps to f; € Homg(M;,R) g M, it follows that f; €
Q; ®r M. Hence, by the choice of @, we have @ C @Q; for all j > 4.

Since the @); are decreasing and @) C @Q; for all j > 4, to show that the @); stabilize
to @ it suffices to find a j > 4 such that @; C Q). As an element of

HOIHR(M,L', R) QR M = COliijJ(HOIHR(MZ', R) QR Mj),
fi is the colimit of f;; for j > 4, and f; also lies in the submodule

colim;ec 7(Q ®r M;) C colimje;(Hompg(M;, R) @r M;).
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It follows that for some j > i, f;; lies in @ ®g M;. Since @; is the smallest
submodule of Hompg(M;, R) with f;; € Q; ®r M, we conclude Q; C Q. O

Lemma 91.3. Let R be a Noetherian ring and A a set. Then M = R* is a flat
and Mittag-Leffler R-module.

Proof. Combining Lemma [90.5] and Proposition we see that M is flat over
R. We show that M satisfies the condition of Lemma Let F be a free finite
R-module. If F' is any submodule of F then it is finitely presented since R is
Noetherian. So by Proposition [89.3]| we have a commutative diagram

F/®RM*>F®RM
(F/)A FA

by which we can identify the map F' @z M — F®r M with (F")* — FA. Hence if
v € F ®@p M corresponds to (r,) € F4, then the submodule of F’ of F' generated
by the z, is the smallest submodule of F' such that z € F' @z M. O

Lemma 91.4. Let R be a Noetherian ring and n a positive integer. Then the
R-module M = R|[[t1,...,t,]] is flat and Mittag-Leffler.

Proof. As an R-module, we have M = R* for a (countable) set A. Hence this
lemma is a special case of Lemma [91.3 (]

Example 91.5. Non Mittag-Leffler modules.

(1) By Exampleand Proposition Q is not a Mittag-Leffler Z-module.

(2) We prove below (Theorem that for a flat and countably generated
module, projectivity is equivalent to being Mittag-Leffler. Thus any flat,
countably generated, non-projective module M is an example of a non-
Mittag-Leffler module. For such an example, see Remark [78.4}

(3) Let k be a field. Let R = k[[z]]. The R-module M = [, .n R/(2™) is not
Mittag-Leffler. Namely, consider the element £ = (£1,£2,&s, .. .) defined by

€om = 22" and &, = 0 else, so

£€=(0,2,0,22,0,0,0,2%,0,0,0,0,0,0,0,2%,...)

Then the annihilator of ¢ in M /22" M is generated 22" for m > 0. But
if M was Mittag-Leffler, then there would exist a finite R-module @) and
an element ¢’ € @ such that the annihilator of ¢’ in Q/2'Q agrees with
the annihilator of ¢ in M/x'M for all [ > 1, see Proposition m (1). Now
you can prove there exists an integer a > 0 such that the annihilator of
¢ in Q/2'Q is generated by either % or '~ for all [ > 0 (depending on
whether £ € @ is torsion or not). The combination of the above would give
for all I = 2™ >> 0 the equality a = [/2 or [ —a = [/2 which is nonsensical.

(4) The same argument shows that (z)-adic completion of @, . R/(2™) is
not Mittag-Leffler over R = k[[z]] (hint: & is actually an element of this
completion).

(5) Let R = kla,b]/(a?, ab,b?). Let S be the finitely presented R-algebra with
presentation S = R[t]/(at — b). Then as an R-module S is countably
generated and indecomposable (details omitted). On the other hand, R
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is Artinian local, hence complete local, hence a henselian local ring, see
Lemma [I53.9] If S was Mittag-Leffler as an R-module, then it would be a
direct sum of finite R-modules by Lemma [I53.13] Thus we conclude that
S is not Mittag-Leffler as an R-module.

92. Countably generated Mittag-Lefler modules

It turns out that countably generated Mittag-Leffler modules have a particularly
simple structure.

Lemma 92.1. Let M be an R-module. Write M = colim;er M; where (M;, fij;)
is a directed system of finitely presented R-modules. If M is Mittag-Leffler and
countably generated, then there is a directed countable subset I' C I such that
M = COlimiep Mi~

Proof. Let x1,x2,... be a countable set of generators for M. For each z,, choose
i € I such that z,, is in the image of the canonical map f; : M; — M; let I, C I
be the set of all these i. Now since M is Mittag-Leffler, for each i € I we can
choose j € I such that j > i and f;; : M; — M, factors through fi, : M; — M;
for all k > i (condition (3) of Proposition [88.6)); let I{ be the union of Ij with all
of these j. Since I is a countable, we can enlarge it to a countable directed set
I, c I. Now we can apply the same procedure to I} as we did to I} to get a new
countable set I}, C I. Then we enlarge I} to a countable directed set I}. Continuing
in this way—adding in a j as in Proposition (3) for each i € I if £ is odd and
enlarging I; to a directed set if ¢ is even—we get a sequence of subsets I, C I for
£>0. The union I’ = |J I; satisfies:

(1) I’ is countable and directed;

(2) each x,, is in the image of f; : M; — M for some i € I';

(3) if ¢ € I, then there is j € I’ such that j > ¢ and f;; : M; — M factors
through fi : M; — My, for all k € I with k > 4. In particular Ker(f;;) C
Ker(f;;) for k > i.

We claim that the canonical map colim;c;r M; — colim;e;y M; = M is an isomor-
phism. By (2) it is surjective. For injectivity, suppose x € colim;e; M; maps to 0
in colim;e; M;. Representing x by an element Z € M; for some ¢ € I’, this means
that f;x(Z) = 0 for some k € I,k > i. But then by (3) there is j € I',j > 4, such
that f;;(Z) = 0. Hence x = 0 in colim;cp M;. O

Lemma [02.1] implies that a countably generated Mittag-Lefler module M over R
is the colimit of a system

My — My — Mg — My — ...

with each M,, a finitely presented R-module. To see this argue as in the proof of
Lemma to see that a countable directed set has a cofinal subset isomorphic to
(N, >). Suppose R = k[z1,22,23,...] and M = R/(x;). Then M is finitely gen-
erated but not finitely presented, hence not Mittag-Leffler (see Example part
(1)). But of course you can write M = colim,, M,, by taking M,, = R/(z1, ..., %),
hence the condition that you can write M as such a limit does not imply that M
is Mittag-Leffler.

Lemmal 92.2. Let R be a ring. Let M be an R-module. Assume M is Mittag-
Leffler and countably generated. For any R-module map f: P — M with P finitely
generated there exists an endomorphism o : M — M such that
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(1) @: M — M factors through a finitely presented R-module, and
(2) aof=f.

Proof. Write M = colim;c; M; as a directed colimit of finitely presented R-
modules with I countable, see Lemma The transition maps are denoted f;;
and we use f; : M; — M to denote the canonical maps into M. Set N = Hsel M.
Denote

Mi* = HomR(Mi7N) = H el HOmR(MiaMS)

so that (M) is an inverse system of R-modules over I. Note that Homg (M, N) =
lim M. As M is Mittag-Leffler, we find for every ¢ € I an index k(i) > i such that

Ei:=(),. Im(M; — M) =Tm(Mj;) — M)

Choose and fix j € I such that Im(P — M) C Im(M; — M). This is possible as
P is finitely generated. Set k = k(j). Let x = (0,...,0,idas,,0,...,0) € M} and
note that this maps toy = (0,...,0, fjx,0,...,0) € M. By our choice of k we see
that y € E;. By Example the transition maps E; — E; are surjective for each
i > j and lim E; = lim M; = Hompg(M, N). Hence Lemma [86.3 guarantees there
exists an element z € Hompg (M, N) which maps to y in E; C M. Let zj be the
kth component of z. Then zj : M — M}, is a homomorphism such that

ij in
M.

J

commutes. Let a : M — M be the composition fy oz : M — My — M. Then «
factors through a finitely presented module by construction and a o f; = f;. Since
the image of f is contained in the image of f; this also implies that a0 f = f. [

We will see later (see Lemma [153.13)) that Lemma means that a countably
generated Mittag-Leffler module over a henselian local ring is a direct sum of finitely
presented modules.

93. Characterizing projective modules

The goal of this section is to prove that a module is projective if and only if it
is flat, Mittag-Leffler, and a direct sum of countably generated modules (Theorem

below).

Lemmal 93.1. Let M be an R-module. If M is flat, Mittag-Leffler, and countably
generated, then M is projective.

Proof. By Lazard’s theorem (Theorem [81.4)), we can write M = colim;c; M; for a
directed system of finite free R-modules (M, f;;) indexed by a set I. By Lemma
92.1] we may assume [ is countable. Now let

0— Ny —> Nyg— N3 —0

be an exact sequence of R-modules. We must show that applying Hompg (M, —)
preserves exactness. Since M; is finite free,

0— I‘IOII]R(]\fi7 Nl) — HOIIIR(Mi, NQ) — HomR(Mi,Ng) — 0
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is exact for each i. Since M is Mittag-Leffler, (Hompg(M;, N1)) is a Mittag-Leffler
inverse system. So by Lemma [86.4]

0— limiel HOIIIR(]\fi7 Nl) — limiel HOHlR<MZ‘, NQ) — Hmiej HomR(Mi7N3) —0

is exact. But for any R-module N there is a functorial isomorphism Hompg (M, N) =
lim;e; Homp (M;, N), so

0— HOIIIR(]\47 Nl) — HOHIR(M, NQ) — HOHTLR(Z\47 Ng) — 0

is exact. O

Remark| 93.2. Lemma @ does not hold without the countable generation as-
sumption. For example, the Z-module M = Z[[z]] is flat and Mittag-Leffler but not
projective. It is Mittag-Leffler by Lemma Subgroups of free abelian groups
are free, hence a projective Z-module is in fact free and so are its submodules.
Thus to show M is not projective it suffices to produce a non-free submodule. Fix
a prime p and consider the submodule N consisting of power series f(z) = > a;x’
such that for every integer m > 1, p™ divides a; for all but finitely many 7. Then
S a;p'atis in N for all a; € Z, so N is uncountable. Thus if N were free it would
have uncountable rank and the dimension of N/pN over Z/p would be uncountable.
This is not true as the elements z° € N/pN for i > 0 span N/pN.

Theorem 93.3. Let M be an R-module. Then M is projective if and only it
satisfies:

(1) M is flat,
(2) M is Mittag-Leffler,
(3) M is a direct sum of countably generated R-modules.

Proof. First suppose M is projective. Then M is a direct summand of a free mod-
ule, so M is flat and Mittag-Leffler since these properties pass to direct summands.
By Kaplansky’s theorem (Theorem [84.5)), M satisfies (3).

Conversely, suppose M satisfies (1)-(3). Since being flat and Mittag-Leffler passes
to direct summands, M is a direct sum of flat, Mittag-Leffler, countably generated
R-modules. Lemma [93.1] implies M is a direct sum of projective modules. Hence
M is projective. O

Lemma 93.4. Let f : M — N be universally injective map of R-modules. Suppose
M is a direct sum of countably generated R-modules, and suppose N is flat and
Mittag-Leffler. Then M 1is projective.

Proof. By Lemmas and M is flat and Mittag-Leffler, so the conclusion
follows from Theorem [93.3] O

Lemmal 93.5. Let R be a Noetherian ring and let M be a R-module. Suppose M
is a direct sum of countably generated R-modules, and suppose there is a universally
injective map M — R|[[t1,...,tn]] for some n. Then M is projective.

Proof. Follows from Lemmas [03.4] and [0T.4] O
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94. Ascending properties of modules
All of the properties of a module in Theorem [03.3]ascend along arbitrary ring maps:

Lemmal 94.1. Let R — S be a ring map. Let M be an R-module. Then:
(1) If M is flat, then the S-module M ®g S is flat.
(2) If M is Mittag-Leffler, then the S-module M ®p S is Mittag-Leffler.
(3) If M is a direct sum of countably generated R-modules, then the S-module
M ®gr S is a direct sum of countably generated S-modules.
(4) If M is projective, then the S-module M ®pr S is projective.

Proof. All are obvious except (2). For this, use formulation (3) of being Mittag-
Leffler from Proposition [88.6] and the fact that tensoring commutes with taking
colimits. ]

95. Descending properties of modules

We address the faithfully flat descent of the properties from Theorem that
characterize projectivity. In the presence of flatness, the property of being a Mittag-
Leffler module descends:

Lemma 95.1. Let R — S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ®pr S is Mittag-Leffler, then M is Mittag-Leffler.

Proof. Write M = colim;c; M; as a directed colimit of finitely presented R-
modules M;. Using Proposition [88.6] we see that we have to prove that for each
t € I there exists ¢ < j, j € I such that M; — M; dominates M; — M.

Take N the pushout
Mi EE—— Mj

L

M——N
Then the lemma is equivalent to the existence of j such that M; — N is universally
injective, see Lemma [88:4] Observe that the tensorization by S

Mi®RS*>Mj®RS

| l

M®rS——N®grS

Is a pushout diagram. So because M Qg S = colim;e; M; R S expresses M Qg S
as a colimit of S-modules of finite presentation, and M ®pr S is Mittag-Leffler, there
exists j > ¢ such that M; g S — N ®pr S is universally injective. So using that
R — S is faithfully flat we conclude that M; — N is universally injective too. [

Lemma 95.2. Let R — S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ®pg S is countably generated, then M is countably generated.

Proof. Say M ®p S is generated by the elements y;, ¢ = 1,2,3,.... Write y; =
ijl,»---m xi; ® s;; for some n; > 0, x;; € M and s;; € S. Denote M’ C M the
submodule generated by the countable collection of elements x;;. Then M'®p S —
M ®p S is surjective as the image contains the generators y;. Since S is faithfully
flat over R we conclude that M’ = M as desired. (]

Email from Juan
Pablo Acosta Lopez
dated 12/20/14.
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At this point the faithfully flat descent of countably generated projective modules
follows easily.

Lemma 95.3. Let R — S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ®@g S is countably generated and projective, then M is countably
generated and projective.

Proof. Follows from Lemmas [83.2] [95.1] and [95.2] and Theorem [93.3] O

All that remains is to use dévissage to reduce descent of projectivity in the general
case to the countably generated case. First, two simple lemmas.

Lemma 95.4. Let R — S be a ring map, let M be an R-module, and let Q)
be a countably generated S-submodule of M @pr S. Then there exists a countably
generated R-submodule P of M such that Im(P ®r S — M ®g S) contains Q.

Proof. Let yi,ys,... be generators for @ and write y; = >, x;x ® s;;, for some
zjr € M and sj;, € S. Then take P be the submodule of M generated by the
Tjk- O

Lemma 95.5. Let R — S be a ring map, and let M be an R-module. Suppose
M ®g S = @,c; Qi is a direct sum of countably generated S-modules Q;. If N is a
countably generated submodule of M, then there is a countably generated submodule
N'" of M such that N' D> N and Im(N' ®p S — M ®r S) = @,c; Qi for some
subset I' C I.

Proof. Let Nj = N. We construct by induction an increasing sequence of count-
ably generated submodules N; C M for £ = 0,1,2,... such that: if I} is the set of
i € I such that the projection of Im(N; ®r S — M ®p S) onto Q; is nonzero, then
Im(Ny,, ®r S — M ®pg S) contains Q; for all i € I}. To construct N, from Ny,
let @ be the sum of (the countably many) @); for ¢ € Ij, choose P as in Lemmam
and then let Ny, , = Ny + P. Having constructed the Ny, just take N' = (J, N;
and I' =, I;. O

Theorem 95.6. Let R — S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ®g S is projective, then M is projective.

Proof. We are going to construct a Kaplansky dévissage of M to show that it is
a direct sum of projective modules and hence projective. By Theorem [B4.5] we can
write M ®p S = @,c; Qi as a direct sum of countably generated S-modules Q;.
Choose a well-ordering on M. Using transfinite recursion we are going to define
an increasing family of submodules M, of M, one for each ordinal «, such that
M, ®gr S is a direct sum of some subset of the Q.

For oo = 0 let My = 0. If o is a limit ordinal and Mg has been defined for all 8 < a,
then define Mg = (s, Mp. Since each Mg ®p S for f < « is a direct sum of a
subset of the );, the same will be true of M,®prS. If a+1 is a successor ordinal and
M, has been defined, then define M, 1, as follows. If M, = M, thenlet M,11 = M.
Otherwise choose the smallest © € M (with respect to the fixed well-ordering) such
that © ¢ M,. Since S is flat over R, (M/M,)®r S =M ®r S/M, ®r S, so since
M, ®pg S is a direct sum of some Q;, the same is true of (M/M,)®g S. By Lemma
95.5] we can find a countably generated R-submodule P of M /M, containing the
image of x in M /M, and such that P ®g S (which equals In(P®p S — M ®g S)
since S is flat over R) is a direct sum of some Q;. Since M ®g S = @,;; Qi is
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projective and projectivity passes to direct summands, P ®pg S is also projective.
Thus by Lemma [05.3] P is projective. Finally we define M,1 to be the preimage
of P in M, so that M,y1/M, = P is countably generated and projective. In
particular M, is a direct summand of M, since projectivity of M1/M, implies
the sequence 0 = M, — My11 — My y1/M, — 0 splits.

Transfinite induction on M (using the fact that we constructed M,11 to contain
the smallest © € M not contained in M,) shows that each x € M is contained in
some M. Thus, there is some large enough ordinal S satisfying: for each x € M
there is o € S such that * € M,. This means (M,)qcs satisfies property (1)
of a Kaplansky dévissage of M. The other properties are clear by construction.
We conclude M = @, cg May1/Ma. Since each Myy1/M, is projective by
construction, M is projective. O

96. Completion

Suppose that R is a ring and [ is an ideal. We define the completion of R with
respect to I to be the limit

R" =lim, R/I".
An element of R" is given by a sequence of elements f,, € R/I™ such that f,, =

fay1 mod I™ for all n. We will view R” as an R-algebra. Similarly, if M is an
R-module then we define the completion of M with respect to I to be the limit

M" = lim, M/I"M.

An element of M” is given by a sequence of elements m,, € M/I"M such that
My = Myy1 mod I"M for all n. We will view M” as an R"-module. From this
description it is clear that there are always canonical maps

M — M" and M ®pR" — M".

Moreover, given a map ¢ : M — N of modules we get an induced map " : M —
N’ on completions making the diagram

M ——-N

L

M» —— N"

commute. In general completion is not an exact functor, see Examples, Section [9
Here are some initial positive results.

Lemmal 96.1. Let R be a ring. Let I C R be an ideal. Let ¢ : M — N be a map
of R-modules.
(1) If M/IM — N/IN is surjective, then M" — N is surjective.
(2) If M — N is surjective, then M — N’ is surjective.
3) If0 = K - M — N — 0 is a short exact sequence of R-modules and N is
flat, then 0 — K — M — N — 0 is a short exact sequence.
(4) The map M ®g R" — M" is surjective for any finite R-module M.

Proof. Assume M/IM — N/IN is surjective. Then the map M/I"M — N/I"N
is surjective for each n > 1 by Nakayama’s lemma. More precisely, apply Lemma
20.1| part (11) to the map M/I™"M — N/I™N over the ring R/I™ and the nilpotent
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ideal I/I™ to see this. Set K,, = {x € M | p(x) € I"N}. Thus we get short exact
sequences

0— K,/I"M — M/I"M — N/I"N — 0
We claim that the canonical map K, 1/I""' M — K,,/I"M is surjective. Namely,
if z € K,, write ¢(z) =) zjn; with z; € I, n; € N. By assumption we can write
nj = @(m;) + Y zjrnjk with m; € M, zj, € I and n;, € N. Hence

oz — Z Zimj) = Z 25 2k M-

This means that 2’ = « — ) z;m; € K,41 maps to x mod I"M which proves
the claim. Now we may apply Lemma to the inverse system of short exact
sequences above to see (1). Part (2) is a special case of (1). If the assumptions of
(3) hold, then for each n the sequence

0—K/I"K - M/I"M — N/I"N — 0

is short exact by Lemma [39.12] Hence we can directly apply Lemma to con-
clude (3) is true. To see (4) choose generators x; € M, i =1,...,n. Then the map
R®™ — M, (a1,...,a,) — Y. a;z; is surjective. Hence by (2) we see (R")®" — M",
(a1,...,an) — > a;x; is surjective. Assertion (4) follows from this. O

Definition 96.2. Let R be aring. Let I C R be an ideal. Let M be an R-module.
We say M is I-adically complete if the map
M — M”" =lim, M/I"M

is an isomorphisnﬂ We say R is I-adically complete if R is I-adically complete as
an R-module.

It is not true that the completion of an R-module M with respect to I is I-adically
complete. For an example see Examples, Section[7] If the ideal is finitely generated,
then the completion is complete.

Lemma 96.3. Let R be a ring. Let I be a finitely generated ideal of R. Let M be
an R-module. Then

(1) the completion M”" is I-adically complete, and

(2) I"M" = Ker(M" — M/I"M) = (I"M)" for allmn > 1.
In particular R is I-adically complete, "R" = (I")", and R"/IT"R" = R/I™.
Proof. Since [ is finitely generated, I™ is finitely generated, say by fi,..., fr.
Applying Lemma part (2) to the surjection (f1,..., fr) : M®" — I"M yields
a surjection

(Yo Yoedn) oy i UMM = Ker(M? — M/TMM).

On the other hand, the image of (fi,...,f,) : (M™)®" — M” is I"M”. Thus
MMN/T"M”™ ~ M/I"M. Taking inverse limits yields (M”")" ~ M"; that is, M" is
I-adically complete. ([
Lemma 96.4. Let R be a ring. Let I C R be an ideal. Let0 - M - N — Q — 0

be an exact sequence of R-modules such that Q is annihilated by a power of I. Then
completion produces an exact sequence 0 — M” — N — Q — 0.

9This includes the condition that ﬂ I"M = 0.

[Mat78, Theorem
15]. The slick proof
given here is from
an email of Bjorn
Poonen dated Nov
5, 2016.
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Proof. Say I°Q = 0. Then Q/I"Q = Q for n > ¢. On the other hand, it is clear
that I"M Cc M NI*N C I"°M for n > ¢. Thus M" =1lim M/(M NI™N). Apply
Lemma [87.1] to the system of exact sequences

0—-M/(MNI"N)— N/I"N - Q —0
for n > ¢ to conclude. O

Lemma 96.5. Let R be a ming. Let I C R be an ideal. Let M be an R-module.
Denote K,, = Ker(M" — M/I"M). Then M" is I-adically complete if and only
if K, is equal to I"M”" for allmn > 1.

Proof. The module I™"M" is contained in K,. Thus for each n > 1 there is a
canonical exact sequence

0 — K, /I"M" — M"/I"M" — M/I"M — 0.
As I"M” maps onto I"M/I" ™M we see that K, 1 + I"M”" = K,. Thus the

inverse system {K,,/I"M"},>1 has surjective transition maps. By Lemma we
see that there is a short exact sequence

0 — lim, K,,/I"M" — (M™)" = M" =0
Hence M” is complete if and only if K,,/I"M”" =0 for all n > 1. O

Lemma 96.6. Let R be a ring, let I C R be an ideal, and let R® =lim R/I".

(1) any element of R™ which maps to a unit of R/I is a unit,

(2) any element of 1+ I maps to an invertible element of R",

(3) any element of 1 + IR" is invertible in R", and

(4) the ideals IR" and Ker(R" — R/I) are contained in the Jacobson radical
of R™.

Proof. Let x € R” map to a unit x; in R/I. Then x maps to a unit z,, in R/I™
for every n by Lemma Hence y = (z,;!) € lim R/I™ = R is an inverse to
x. Parts (2) and (3) follow immediately from (1). Part (4) follows from (1) and
Lemma [19.11 O

Lemma 96.7. Let A be a ring. Let I = (f1,..., fr) be a finitely generated ideal.
If M — lim M/ f*M is surjective for each i, then M — lim M/I"™M is surjective.

Proof. Note that lim M/I"M = lim M/(f{, ..., fP)M as I™ D (f,...,f*) D
I"™. An element & of lim M/(f7*,..., f*)M can be symbolically written as

&= ano Zz Jitn,i

with x,; € M. If M — lim M/ f*M is surjective, then there is an xz; € M mapping
to > @y f in lim M/ fPM. Then x = x; maps to & in lim M/I"M. O

Lemmal 96.8. Let A be a ring. Let I C J C A be ideals. If M is J-adically
complete and I is finitely generated, then M is I-adically complete.

Proof. Assume M is J-adically complete and I is finitely generated. We have
N I"M = 0 because (| J"M = 0. By Lemmait suffices to prove the surjectivity
of M — lim M/I™M in case I is generated by a single element. Say I = (f). Let
Tp € M with z,41 —x, € f"M. We have to show there exists an « € M such that
Tn —x € f"M for all n. As 41 — x, € J"M and as M is J-adically complete,
there exists an element x € M such that xz,, —z € J"M. Replacing z,, by =, — =

Taken from an
unpublished note of
Lenstra and de
Smit.
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we may assume that xz, € J"M. To finish the proof we will show that this implies
x, € I™"M. Namely, write x,, — zp4+1 = f"2,. Then

Ty = fn(Zn +fzn+1 +f22n+2 —+ ..-)

The sum 2, + fzn11 + 22042 + ... converges in M as f¢ € J¢. The sum f"(z, +
fant1 —|—f22n+2 +...) converges in M to x, because the partial sums equal x,, — 4«
and T4, € J"TCM. O

Lemma 96.9. Let R be a ring. Let I, J be ideals of R. Assume there exist integers
c,d > 0 such that I¢ C J and J* C I. Then completion with respect to I agrees
with completion with respect to J for any R-module. In particular an R-module M
is I-adically complete if and only if it is J-adically complete.

Proof. Consider the system of maps M/I"M — M/J"/@ M and the system of
maps M/J™M — M/IL"™/¢J M to get mutually inverse maps between the comple-
tions. (]

Lemma 96.10. Let R be a ring. Let I be an ideal of R. Let M be an I-adically
complete R-module, and let K C M be an R-submodule. The following are equiva-
lent

(1) K=N(K+I"M) and

(2) M/K is I-adically complete.

Proof. Set N = M/K. By Lemma the map M = M” — N’ is surjective.
Hence N — N” is surjective. It is easy to see that the kernel of N — N” is the
module (K + I"M)/K. O

Lemma 96.11. Let R be a ring. Let I be an ideal of R. Let M be an R-module.
If (a) R is I-adically complete, (b) M is a finite R-module, and (c) (N I"M = (0),
then M is I-adically complete.

Proof. By Lemma the map M = M @gp R = M ®r R — M”" is surjective.
The kernel of this map is () I™M hence zero by assumption. Hence M = M” and
M is complete. O

Lemma 96.12. Let R be a ring. Let I C R be an ideal. Let M be an R-module.
Assume

(1) R is I-adically complete,

(2) Nyp>y I"M = (0), and

(3) M/IM is a finite R/I-module.
Then M is a finite R-module.

Proof. Let x1,...,z, € M be elements whose images in M/IM generate M/IM
as a R/I-module. Denote M’ C M the R-submodule generated by z1,...,z,. By
Lemma the map (M’)" — M" is surjective. Since ((I"M = 0 we see in
particular that (| I"M’ = (0). Hence by Lemma we see that M’ is complete,
and we conclude that M’ — M” is surjective. Finally, the kernel of M — M" is
zero since it is equal to [\ I™M = (0). Hence we conclude that M = M’ = M”" is
finitely generated. O
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97. Completion for Noetherian rings

OBNH In this section we discuss completion with respect to ideals in Noetherian rings.

O0MA |Lemma 97.1. Let I be an ideal of a Noetherian ring R. Denote  completion

00MB

00MC

with respect to I.

(1) If K — N is an injective map of finite R-modules, then the map on com-
pletions K — N’ is injective.

(2) If0 = K - N - M — 0 is a short exact sequence of finite R-modules,
then 0 — K — N — M” — 0 is a short ezact sequence.

(3) If M is a finite R-module, then M" = M @r R".

Proof. Setting M = N/K we find that part (1) follows from part (2). Let 0 —
K — N — M — 0 be as in (2). For each n we get the short exact sequence
0—K/(I"NNK)— N/I"N - M/I"M — 0.
By Lemma [87.1] we obtain the exact sequence
0—limK/(I"NNK)— N"— M" —0.
By the Artin-Rees Lemmawe may choose csuch that I"K C I"NNK C I"°K

for n > c¢. Hence K" =lim K/I"K = lim K/(I"N N K) and we conclude that (2)
is true.

Let M be as in (3) and let 0 - K — R® — M — 0 be a presentation of M. We
get a commutative diagram

K®RRA4>R@t®RRA4>M®RRA4>O

| | |

0 K/\ (R®t)A M/\ 0

The top row is exact, see Section The bottom row is exact by part (2). By
Lemma the vertical arrows are surjective. The middle vertical arrow is an
isomorphism. We conclude (3) holds by the Snake Lemma O

Lemma 97.2. Let I be a ideal of a Noetherian ring R. Denote " completion with
respect to I.
(1) The ring map R — R is flat.
(2) The functor M — M”" is exact on the category of finitely generated R-
modules.

Proof. Consider J @ R — R ®r R® = R” where J is an arbitrary ideal of
R. According to Lemma this is identified with J" — R" and J* — R’ is
injective. Part (1) follows from Lemma [39.5 Part (2) is a reformulation of Lemma
97.1] part (2). O

Lemma 97.3. Let (R, m) be a Noetherian local ring. Let I C m be an ideal. Denote
R™ the completion of R with respect to I. The ring map R — R" is faithfully flat.
In particular the completion with respect to m, namely lim,, R/m"™ is faithfully flat.

Proof. By Lemma it is flat. The composition R — R" — R/m where the last
map is the projection map R" — R/I combined with R/I — R/m shows that m is
in the image of Spec(R") — Spec(R). Hence the map is faithfully flat by Lemma
O
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Lemma 97.4. Let R be a Noetherian ring. Let I be an ideal of R. Let M be an
R-module. Then the completion M”" of M with respect to I is I-adically complete,
mmM» = (I"M)™, and MM/ I"M”" = M/I™"M.

Proof. This is a special case of Lemma because I is a finitely generated
ideal. O

Lemma 97.5. Let I be an ideal of a ring R. Assume

(1) R/I is a Noetherian ring,
(2) I is finitely generated.

Then the completion R™ of R with respect to I is a Noetherian ring complete with
respect to IR™.

Proof. By Lemmal(96.3|we see that R is I-adically complete. Hence it is also TR"-
adically complete. Since R"/IR" = R/I is Noetherian we see that after replacing
R by R" we may in addition to assumptions (1) and (2) assume that also R is
I-adically complete.

Let f1,..., f: be generators of I. Then there is a surjection of rings R/I[Ty,...,T;] —
@ I /1" mapping T; to the element f;, € I/I?. Hence @ I"/I"*! is a Noetherian
ring. Let J C R be an ideal. Consider the ideal

@inrjinrtt cPryrt
Let gy,...,9,, be generators of this ideal. We may choose g, to be a homogeneous

element of degree d; and we may pick g; € JNI% mapping to g; € JNI% [ JnIditt,
We claim that ¢, ..., g generate J.

Let z € JNI". There exist a; € [™*(0n=di) guch that  — Y a;jg; € J NI+
The reason is that J N I"/J NI" is equal to Y. g;I"~% /I"~%*1 by our choice
of g1,...,9m. Hence starting with € J we can find a sequence of vectors
(@1ms -+ ey Gmon)n>0 With aj,, € T™%(0n=di) sych that

v=)
n=0

Setting A; = Y o, ajn we see that x = Y Ajg; as R is complete. Hence J is
finitely generated and we win. (I

..........

Lemma 97.6. Let R be a Noetherian ring. Let I be an ideal of R. The completion
R of R with respect to I is Noetherian.

Proof. This is a consequence of Lemma It can also be seen directly as follows.
Choose generators f1,..., f, of I. Consider the map

R[z1,...,x]] — R", @ — fi.
This is a well defined and surjective ring map (details omitted). Since R[[z1, ..., Z4]]
is Noetherian (see Lemma [31.2) we win. O

Suppose R — S is a local homomorphism of local rings (R, m) and (S, n). Let S™ be
the completion of S with respect to n. In general S” is not the m-adic completion
of S. If n* C mS for some ¢ > 1 then we do have S* = lim S/m™S by Lemma [96.9]
In some cases this even implies that S” is finite over R”.
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Lemma 97.7. Let R — S be a local homomorphism of local rings (R,m) and
(S,n). Let R™, resp. S™ be the completion of R, resp. S with respect to m, resp. n.
If m and n are finitely generated and dim, ) S/mS < oo, then

(1) S" is equal to the m-adic completion of S, and

(2) S™ is a finite R"-module.

Proof. We have mS C n because R — S is a local ring map. The assumption
dimy, () S/mS < oo implies that S/mS is an Artinian ring, see Lcmmam Hence
has dimension 0, see Lemma hence n = v/mS. This and the fact that n is
finitely generated implies that n® C mS for some ¢t > 1. By Lemmawe see that
S’ can be identified with the m-adic completion of S. As m is finitely generated
we see from Lemma that " and R" are m-adically complete. At this point
we may apply Lemma to 8" as an R"-module to conclude. (]

Lemmal 97.8. Let R be a Noetherian ring. Let R — S be a finite ring map. Let
p C R be a prime and let qy, ..., q, be the primes of S lying over p (Lemma .
Then

Ry ®@r S = (Sp)" = 8p x ... xS
where the (Sy)" is the completion with respect to p and the local rings R, and Sy,
are completed with respect to their maximal ideals.

Proof. The first equality follows from Lemma We may replace R by the
localization R, and S by S, = S ®@r R,. Hence we may assume that R is a local
Noetherian ring and that p = m is its maximal ideal. The q;S5,,-adic completion
SqA is equal to the m-adic completion by Lemma For every n > 1 prime ideals
of S/m"S are in 1-to-1 correspondence with the maximal ideals q1, ..., g, of S (by
going up for S over R, see Lemma [36.22)). Hence S/m™S = [[S,,/m"S,, by Lemma
53.6| (using for example Proposition to see that S/m™S is Artinian). Hence
the m-adic completion S” of S is equal to []S7,. Finally, we have R" @ S = S
by Lemma [97.1 (]

Lemma 97.9. Let R be a ring. Let I C R be an ideal. Let0 - K - P —- M — 0
be a short exact sequence of R-modules. If M is flat over R and M/IM is a
projective R/I-module, then the sequence of I-adic completions

0— K" —=P'—=M"—=0
is a split exact sequence.

Proof. As M is flat, each of the sequences
0— K/I"K — P/I"P - M/I"M — 0

is short exact, see Lemma [39.12] and the sequence 0 — K" — P — M" — 0
is a short exact sequence, see Lemma It suffices to show that we can find
splittings s, : M/I"M — P/I™P such that s,11 mod I = s,,. We will construct
these s, by induction on n. Pick any splitting s1, which exists as M/IM is a
projective R/I-module. Assume given s, for some n > 0. Set P41 = {x € P |
zmod I"P € Im(s,)}. The map m : Pyy1/I" P,y — M/I"MM is surjective
(details omitted). As M/I"1M is projective as a R/I™+1-module by Lemma
we may choose a section t : M/I"**M — P, 1/I""'P, 1 of 7. Setting s,41
equal to the composition of ¢t with the canonical map P, {/I"*'P,; — P/I""1P
works. ]
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Lemmal 97.10. Let A be a Noetherian ring. Let I,J C A be ideals. If A is
I-adically complete and A/T is J-adically complete, then A is J-adically complete.

Proof. Let B be the (I + J)-adic completion of A. By Lemma B/IB is the
J-adic completion of A/I hence isomorphic to A/I by assumption. Moreover B
is I-adically complete by Lemma [96.8] Hence B is a finite A-module by Lemma
By Nakayama’s lemma (Lemma using I is in the Jacobson radical of
A by Lemma we find that A — B is surjective. The map A — B is flat by
Lemma The image of Spec(B) — Spec(A) contains V' (I) and as [ is contained
in the Jacobson radical of A we find A — B is faithfully flat (Lemma . Thus
A — B is injective. Thus A is complete with respect to I + J, hence a fortiori
complete with respect to J. (]

98. Taking limits of modules

In this section we discuss what happens when we take a limit of modules.

Lemma 98.1. Let I C A be a finitely generated ideal of a ring. Let (M,,) be
an inverse system of A-modules with I""M, = 0. Then M = lim M,, is I-adically
complete.

Proof. We have M — M/I"M — M,,. Taking the limit we get M — M”" — M.
Hence M is a direct summand of M”. Since M” is I-adically complete by Lemma

[06.3] so is M. O

Lemma 98.2. Let I C A be a finitely generated ideal of a ring. Let (M,,) be an
inverse system of A-modules with M,, = Myp11/I" My 41. Then M/I"M = M, and
M is I-adically complete.

Proof. By Lemma [08.1] we see that M is I-adically complete. Since the transition
maps are surjective, the maps M — M,, are surjective. Consider the inverse system
of short exact sequences

0—+N, -—M—>M, —0

defining N,,. Since M,, = M,,11/I" M, 41 the map N, 1+ I"M — N, is surjective.
Hence Ny, y1/(Npi1 NI"PIM) — N, /(N, N I"M) is surjective. Taking the inverse
limit of the short exact sequences

0— N,/(N.NI"M) — M/T"M — M,, — 0
we obtain an exact sequence
0— limN,/(N,NI"M) — M" - M

Since M is I-adically complete we conclude that lim N,, /(N,, N I" M) = 0 and hence
by the surjectivity of the transition maps we get N, /(N, N I"M) = 0 for all n.
Thus M,, = M/I"M as desired. O

Lemmal 98.3. Let A be a Noetherian graded ring. Let I C A4 be a homoge-

neous ideal. Let (Ny,,) be an inverse system of finite graded A-modules with N,, =
Npy1/I"Npy1. Then there is a finite graded A-module N such that N, = N/I"N
as graded modules for all n.
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Proof. Pick r and homogeneous elements 1 1,...,21,» € Ny of degrees dy,...,d,
generating IN;. Since the transition maps are surjective, we can pick a compatible
system of homogeneous elements z, ; € N, lifting x; ;. By the graded Nakayama
lemma (Lemma we see that N, is generated by the elements . 1,...,Zn,,
sitting in degrees dy,...,d,. Thus for m < n we see that N,, — N,,/I"™N,, is an
isomorphism in degrees < min(d;) + m (as I™N,, is zero in those degrees). Thus
the inverse system of degree d parts

o= Noyd—min(d;),d = Nitd—min(d;),d = Nd—min(d;),d = N-14+d—min(di),d — - - -
stabilizes as indicated. Let N be the graded A-module whose dth graded part is
this stabilization. In particular, we have the elements x; = limz, ; in N. We claim
the x; generate N: any = € Ny is a linear combination of z1,...,z, because we
can check this in Ny_min(a,),q Where it holds as zg_in(d,),i generate Ng_min(d,)-
Finally, the reader checks that the surjective map N/I"N — N, is an isomorphism
by checking to see what happens in each degree as before. Details omitted. O

Lemmal 98.4. Let A be a graded ring. Let I C A, be a homogeneous ideal.
Denote A’ = lim A/I™. Let (G,) be an inverse system of graded A-modules with
G, annihilated by I™. Let M be a graded A-module and let ¢, : M — G, be a
compatible system of graded A-module maps. If the induced map

p:Me4 A — limG,
is an isomorphism, then Mg — lim G,, 4 is an isomorphism for all d € Z.

Proof. By convention graded rings are in degrees > 0 and graded modules may
have nonzero parts of any degree, see Section The map ¢ exists because lim G,,
is a module over A’ as G,, is annihilated by I"™. Another useful thing to keep in
mind is that we have

@dez limG,, 4 ClimG,, C Hdez lim G, 4
where a subscript 4 indicates the dth graded part.

Injective. Let © € My. If z — 0 in limG,, 4 then 2 ®1 =0in M ®4 A’. Then
we can find a finitely generated submodule M’ € M with x € M’ such that x ® 1
is zero in M’ @4 A’. Say M’ is generated by homogeneous elements sitting in
degrees dy,...,d,. Let n = d —min(d;) + 1. Since A’ has a map to A/I"™ and since
A — A/I™ is an isomorphism in degrees < n — 1 we see that M’ — M’ ®4 A’ is
injective in degrees < n — 1. Thus z = 0 as desired.

Surjective. Let y € lim G,, 4. Choose a finite sum ) z; ® f] in M ®4 A’ mapping
to y. We may assume zx; is homogeneous, say of degree d;. Observe that although

A’ is not a graded ring, it is a limit of the graded rings A/I™ A and moreover, in
any given degree the transition maps eventually become isomorphisms (see above).

This gives
_ /
A= @dzoAd cA c | |d20Ad

fi= Zj:o,...,d—dt—l fij+ fi+gi
with f;; € A;, fi € Aq_q,, and g; € A’ mapping to zero in ngd_di A;. Now if
we compute @n(zm fijzi) € Gy, then we get a sum of homogeneous elements of
degree < d. Hence () x;® f; ;) maps to zero in lim Gy, 4. Similarly, a computation

Thus we can write
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shows the element ¢(3°z; ® g;) maps to zero in [[;.,lim G, a. Since we know
that ©(>_x; ® f!) is y, we conclude that > f;x; € My maps to y as desired. O

99. Criteria for flatness

In this section we prove some important technical lemmas in the Noetherian case.
We will (partially) generalize these to the non-Noetherian case in Section

Lemma 99.1. Suppose that R — S is a local homomorphism of Noetherian local
rings. Denote m the maximal ideal of R. Let M be a flat R-module and N a finite
S-module. Let w : N — M be a map of R-modules. If uw : N/mN — M/mM is
injective then w is injective. In this case M/u(N) is flat over R.

Proof. First we claim that u, : N/m"N — M/m"M is injective for all n > 1. We
proceed by induction, the base case is that w = u; is injective. By our assumption
that M is flat over R we have a short exact sequence 0 — M ®p m"/m"t1 —
M/o" M — M/m"M — 0. Also, M ®p m"/m" ™! = M/mM Qp/m m™/m"H
We have a similar exact sequence N ®g m"/m"*t — N/m"tIN — N/m"N — 0
for N except we do not have the zero on the left. We also have N ® g m™/m"+! =
N/mN ®@g/m m”/m"*1. Thus the map u, 1 is injective as both u,, and the map
U @ idgn jmn+1 are.

By Krull’s intersection theorem (Lemma [51.4]) applied to N over the ring S and
the ideal mS we have (Ym™N = 0. Thus the injectivity of u, for all n implies w is
injective.

To show that M /u(N) is flat over R, it suffices to show that Tort (M /u(N), R/I) =
0 for every ideal I C R, see Lemma [75.8] From the short exact sequence

0= NS M- M/ulN)—0
and the flatness of M we obtain an exact sequence of Tors
0 — Torf(M/u(N),R/I) — N/IN — M/IM
See Lemma Thus it suffices to show that N/IN injects into M /IM. Note that
R/I — S/IS is a local homomorphism of Noetherian local rings, N/IN — M/IM
is a map of R/I-modules, N/IN is finite over S/IS, and M/IM is flat over R/I

and umod I : N/IN — M/IM is injective modulo m. Thus we may apply the first
part of the proof to u mod I and we conclude. O

Lemmal 99.2. Suppose that R — S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the maximal ideal of R. Suppose f € S is a
nonzerodivisor in S/mS. Then S/fS is flat over R, and [ is a nonzerodivisor in

S.
Proof. Follows directly from Lemma [99.1 (]

Lemma 99.3. Suppose that R — S is a flat and local ring homomorphism of
Noetherian local rings. Denote m the mazimal ideal of R. Suppose fi,..., fc is a
sequence of elements of S such that the images fq,..., f. form a reqular sequence
in S/mS. Then fi,...,fc is a regular sequence in S and each of the quotients

S/(f1,..., fi) is flat over R.
Proof. Induction and Lemma [09.2 O
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Lemma 99.4. Let R — S be a local homomorphism of Noetherian local rings.
Let m be the mazimal ideal of R. Let M be a finite S-module. Suppose that (a)
M/mM is a free S/mS-module, and (b) M is flat over R. Then M is free and S
is flat over R.

Proof. Let Ty,...,T, be a basis for the free module M/mM. Choose x1,...,2, €
M with z; mapping to ;. Let u : S®® — M be the map which maps the ith
standard basis vector to x;. By Lemma we see that u is injective. On the other
hand, by Nakayama’s Lemma [20.1] the map is surjective. The lemma follows. O

Lemmal 99.5. Let R — S be a local homomorphism of local Noetherian rings.
Let m be the mazimal ideal of R. Let 0 — F, — F._1 — ... — Fy be a finite
complex of finite S-modules. Assume that each F; is R-flat, and that the complex
0— F./mF, > Fo_y/mF._y — ... = Fy/mF, is exact. Then 0 — Fo — F._1 —
... = Fpy is exact, and moreover the module Coker(Fy — Fy) is R-flat.

Proof. By induction on e. If e = 1, then this is exactly Lemma Ife>1, we
see by Lemma that F, — F._; is injective and that C = Coker(F, — F,_1)
is a finite S-module flat over R. Hence we can apply the induction hypothesis to
the complex 0 - C — F,_o5 — ... = Fy. We deduce that C — F._5 is injective
and the exactness of the complex follows, as well as the flatness of the cokernel of
F, — Fy. O

In the rest of this section we prove two versions of what is called the “local criterion
of flatness”. Note also the interesting Lemma [T28.1] below.

Lemmal 99.6. Let R be a local ring with maximal ideal m and residue field k =
R/m. Let M be an R-module. If Torf(k,M) = 0, then for every finite length
R-module N we have Tor(N, M) = 0.

Proof. By descending induction on the length of N. If the length of IV is 1, then
N = g and we are done. If the length of N is more than 1, then we can fit N
into a short exact sequence 0 -+ N’ — N — N” — 0 where N’, N” are finite
length R-modules of smaller length. The vanishing of Tor?(N, M) follows from the
vanishing of Tory(N’, M) and Tor(N"”, M) (induction hypothesis) and the long
exact sequence of Tor groups, see Lemma [75.2] O

Lemma 99.7 (Local criterion for flatness). Let R — S be a local homomorphism
of local Noetherian rings. Let m be the mazimal ideal of R, and let k = R/m. Let
M be a finite S-module. If Tors(k, M) =0, then M is flat over R.

Proof. Let I C R be anideal. By Lemma it suffices to show that I g M — M
is injective. By Remark we see that this kernel is equal to Tori(M, R/I). By
Lemma [99.6] we see that J ®r M — M is injective for all ideals of finite colength.

Choose n >> 0 and consider the following short exact sequence

O—=InNm" —>Iem"” >I4+m" =0
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This is a sub sequence of the short exact sequence 0 - R — R®2 —+ R — 0. Thus
we get the diagram

INnm™")@pM ——I@rpMem"@pM —— (I +m") Qg M

l | i

M MM M

Note that I +m™ and m”™ are ideals of finite colength. Thus a diagram chase shows
that Ker((INm™)®@p M — M) — Ker(I ®r M — M) is surjective. We conclude in
particular that K = Ker(I @ g M — M) is contained in the image of (INm"™)@r M
in I®r M. By Artin-Rees, Lemma we see that K is contained in m"~¢(I@r M)
for some ¢ > 0 and all n >> 0. Since I ®g M is a finite S-module (!) and since S
is Noetherian, we see that this implies K = 0. Namely, the above implies K maps
to zero in the mS-adic completion of I ® g M. But the map from S to its mS-adic
completion is faithfully flat by Lemma [07.3] Hence K = 0, as desired. O

In the following we often encounter the conditions “M/IM is flat over R/I and
Tor®(R/I, M) = 0”. The following lemma gives some consequences of these condi-
tions (it is a generalization of Lemma .

Lemmal 99.8. Let R be a ring. Let I C R be an ideal. Let M be an R-module. If
M/IM is flat over R/I and TorX(R/I, M) =0 then
(1) M/I™M is flat over R/I™ for alln > 1, and
(2) for any module N which is annihilated by I'™ for some m > 0 we have
Torf(N, M) = 0.
In particular, if I is nilpotent, then M is flat over R.

Proof. Assume M/IM is flat over R/I and Tori'(R/I,M) = 0. Let N be an
R/I-module. Choose a short exact sequence

O—>K—>@_€IR/I—>N—>O

By the long exact sequence of Tor and the vanishing of Tor{2 (R/I,M) we get
0 — Torf(N,M) - K @p M — (@_GIR/I) @rM - NRgpM —0

But since K, @,.; R/I, and N are all annihilated by I we see that

K®rM =K @/t M/IM,
(@idR/I) Q@r M = (@iGIR/I) ®ryr M/IM,
N®@gM =N &g/ M/IM.
As M/IM is flat over R/I we conclude that
0— K ®pyy M/IM — (@iel R/I)®@p;r M/IM — N @g, M/IM — 0

el

is exact. Combining this with the above we conclude that Torf(N , M) =0 for any
R-module N annihilated by I.

In particular, if we apply this to the module I/I?, then we conclude that the
sequence
0-I*9p M - IT@r M —I/I?®r M — 0
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is short exact. This implies that 12 ® g M — M is injective and it implies that
I/I? g, M/IM = IM/I*M.

Let us prove that M/I?M is flat over R/I?. Let I? C J be an ideal. We have to
show that J/I? ®p 2 M/I*?M — M/I*M is injective, see Lemma As M/IM
is flat over R/I we know that the map (I +.J)/I®p;f M/IM — M/IM is injective.
The sequence

(INJ)/I* ®pyr2 M/I?M — J/I? @2 M/T°M — (I+ J)/I @p;r M/IM — 0

is exact, as you get it by tensoring the exact sequence 0 — (INJ) — J —
(I+J)/I —0by M/I?M. Hence suffices to prove the injectivity of the map (I N
J)/T? @ g1 M/IM — IM/T*M. However, the map (I N.J)/I? — I/T? is injective
and as M/IM is flat over R/I the map (INJ)/I?®p,  M/IM — I/1*®@p;; M/IM
is injective. Since we have previously seen that I/1? @ g,y M/IM = IM/I*M we
obtain the desired injectivity.

Hence we have proven that the assumptions imply: (a) Torf (N, M) = 0 for all N
annihilated by I, (b) I? @z M — M is injective, and (c) M/I?M is flat over R/I>.
Thus we can continue by induction to get the same results for I"™ for alln > 1. O

Lemma 99.9. Let R be a ring. Let I C R be an ideal. Let M be an R-module.

(1) If M/IM s flat over R/I and M ®g I/I> — IM/I*M is injective, then
M/I*M s flat over R/I.

(2) If M/IM s flat over R/I and M ®@p I" /1" — "M /I 1M is injective
forn=1,... k, then M/I**1M is flat over R/I**1.

Proof. The first statement is a consequence of Lemma[99.8|applied with R replaced
by R/I? and M replaced by M/I?M using that

R/1? 2 _ 2 2
Tor™ T (M/I2M, R/T) = Ker(M @ I/1? — IM/I*M),

see Remark The second statement follows in the same manner using induction
on n to show that M /It M is flat over R/I"*! for n = 1,..., k. Here we use that

Tor™ ™" (M1 M, R/T) = Ker(M @ I™/I"Y — ["M/ 1"+ M)

for every n. O

Lemma 99.10 (Variant of the local criterion). Let R — S be a local homomor-
phism of Noetherian local rings. Let I # R be an ideal in R. Let M be a finite
S-module. If Torl(M,R/I) =0 and M/IM is flat over R/I, then M is flat over
R.

Proof. First proof: By Lemma we see that Tor(k, M) is zero where & is the
residue field of R. Hence we see that M is flat over R by Lemma [99.7]

Second proof: Let m be the maximal ideal of R. We will show that m®@pr M — M
is injective, and then apply Lemma Suppose that Y fi ® ; € m g M
and that > f;x; = 0 in M. By the equational criterion for flatness Lemma [39.11
applied to M/IM over R/I we see there exist @;; € R/I and §; € M/IM such that
z; mod IM = Zj @;;y; and 0 = Y. (fi mod I)a@;;. Let a;; € R be a lift of @;; and
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similarly let y; € M be a lift of y;. Then we see that

Y fiwwi = Y fi®x+ Y fiay@yi— > fi®agy;
= D fi®@i—> ayy)+ Y O fia) @y;

Since x; — Y ai;y; € IM and Y fia;; € I we see that there exists an element in
I ®p M which maps to our given element > f; ® x; in m®pr M. But I®@g M — M
is injective by assumption (see Remark [75.9) and we win. O

In particular, in the situation of Lemma [99.10] suppose that I = (x) is generated
by a single element 2 which is a nonzerodivisor in R. Then Tor®(M, R/(z)) = (0)
if and only if x is a nonzerodivisor on M.

Lemmal 99.11. Let R — S be a ring map. Let I C R be an ideal. Let M be an
S-module. Assume

(1) R is a Noetherian ring,

(2) S is a Noetherian ring,

(3) M is a finite S-module, and

(4) for each n > 1 the module M/I™"M is flat over R/I™.
Then for every q € V(IS) the localization My is flat over R. In particular, if S is
local and IS is contained in its maximal ideal, then M is flat over R.

Proof. We are going to use Lemma By assumption M/IM is flat over
R/I. Hence it suffices to check that Tory'(M, R/I) is zero on localization at q. By
Remarkthis Tor group is equal to K = Ker(I @ g M — M). We know for each
n > 1 that the kernel Ker(//I" ®p/» M/I"M — M/I"M) is zero. Since there
is a module map I/I" @p/pn M/I"M — (I ®r M)/I""*(I ® M) we conclude
that K C I"~Y(I ®p M) for each n. By the Artin-Rees lemma, and more precisely
Lemma we conclude that Kq = 0, as desired. O

Lemma 99.12. Let R — R’ — R” be ring maps. Let M be an R-module.
Suppose that M@ R’ is flat over R'. Then the natural map Tort (M, R'Y®@p R" —
Torf'(M, R") is onto.
Proof. Let F, be a free resolution of M over R. The complex Fb» ®g R’ — F; ®r
R — Fy ®r R’ computes Tor{'(M, R'). The complex F; ®r R’ — F; ®r R" —
Fy ®r R’ computes Torf‘(M7 R"”). Note that F; ®g R’ ®r» R’ = F; @ R". Let
K' =Ker(F; g R’ — Fy ®p R’) and similarly K" = Ker(Fy ® g R — Fy ®gr R").
Thus we have an exact sequence
0K - Fir R - Fy®@r R - M®r R — 0.

By the assumption that M ®p R’ is flat over R’, the sequence

K’ X R R’ — F ®pr R — Fo®pr R — M®RR” —0

is still exact. This means that K’ @z R’ — K" is surjective. Since Tori(M, R')
is a quotient of K’ and Torf (M, R") is a quotient of K" we win. O

Lemma 99.13. Let R — R’ be a ring map. Let I C R be an ideal and I' = IR'.
Let M be an R-module and set M’ = M®gR'. The natural map Torl(R'/T', M) —
Tor{?‘/ (R'/I', M'") is surjective.
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Proof. Let F5 — Fy — Fy — M — 0 be a free resolution of M over R. Set
F! = F; ®r R'. The sequence Fj — F| — F}j — M’ — 0 may no longer be exact
at Fy. A free resolution of M’ over R’ therefore looks like
Fy,eoF) - F - Fy—M —0
for a suitable free module Fy over R’. Next, note that F; @ g R'/I' = F//IF] =
F!/I'F!. So the complex F} /T'Fy — F|/T'F] — F}/I' F}, computes Tori (M, R'/I").
On the other hand F} ® g R'/I' = F]/I' F} and similarly for F'. Thus the complex
F}/I'Fy @ FY/I'FY — F|/I'Fl — F}/I'F}, computes Tor (M’ R'/I'). Since the

vertical map on complexes

FJI'F)— ~ F/I'F — = F/I'F}

| L

F)/)I'Fy® F)/I'F) —— F|/I'F| —— F}/I'F}
clearly induces a surjection on cohomology we win. O

Lemma 99.14. Let

S ——=9

]

R——=PFR

be a commutative diagram of local homomorphisms of local Noetherian rings. Let
I C R be a proper ideal. Let M be a finite S-module. Denote I' = IR’ and
M =M ®gS’. Assume that

(1) S’ is a localization of the tensor product S ® g R',

(2) M/IM is flat over R/I,

(3) Torf'(M,R/I) — Torf" (M',R'/I") is zero.
Then M’ is flat over R'.

Proof. Since S’ is a localization of S @ R’ we see that M’ is a localization of
M ®gr R'. Note that by Lemma m the module M/IM ®p,; R'/I' = M ®gr
R'/I'(M ®g R’) is flat over R'/I'. Hence also M'/I'M’ is flat over R'/I’ as the
localization of a flat module is flat. By Lemma [99.10] it suffices to show that
Torf”/ (M',R'/I') is zero. Since M’ is a localization of M ® g R’, the last assumption
implies that it suffices to show that Tor™(M, R/I)®r R' — Torf (M @ R/, R'/T)
is surjective.

By Lemmawe see that Tor™ (M, R'/I') — Tor® (M®gzR', R'/I') is surjective.
So now it suffices to show that Torl (M, R/T)®r R — Torl'(M, R’ /T") is surjective.
This follows from Lemma [09.12] by looking at the ring maps R — R/I — R'/I’ and
the module M. g

Please compare the lemma below to Lemma [101.8 (the case of a nilpotent ideal)
and Lemma [128.8] (the case of finitely presented algebras).

Lemma 99.15 (Critére de platitude par fibres; Noetherian case). Let R, S, S’
be Noetherian local rings and let R — S — S’ be local ring homomorphisms. Let
m C R be the maximal ideal. Let M be an S’-module. Assume
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(1) The module M is finite over S’.

(2) The module M is not zero.

(3) The module M/mM is a flat S/mS-module.
(4) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. Set I =mS C S. Then we see that M/IM is a flat S/I-module because of
(3). Since m®gr S’ — I ®g S’ is surjective we see that also m@r M — [ ®¢ M is
surjective. Consider

mOrM —I®s M — M.

As M is flat over R the composition is injective and so both arrows are injective.
In particular Tory(S/I, M) = 0 see Remark By Lemma we conclude
that M is flat over S. Note that since M /mg M is not zero by Nakayama’s Lemma
20.1| we see that actually M is faithfully flat over S by Lemma (since it forces

Consider the exact sequence 0 — m — R — x — 0. This gives an exact sequence
0 — Torj(k,S) = m®r S — I — 0. Since M is flat over S this gives an exact
sequence 0 — Torf(k,S) ®s M — m®r M — I ®g M — 0. By the above this
implies that Torf'(k,S) ®g M = 0. Since M is faithfully flat over S this implies
that Tort'(k,S) = 0 and we conclude that S is flat over R by Lemma O

100. Base change and flatness
Some lemmas which deal with what happens with flatness when doing a base change.

Lemma 100.1. Let

S ——=9

]

R——PR
be a commutative diagram of local homomorphisms of local rings. Assume that S’
is a localization of the tensor product S @gr R'. Let M be an S-module and set
M =5 ®¢ M.
(1) If M is flat over R then M’ is flat over R'.
(2) If M’ is flat over R and R — R’ is flat then M is flat over R.

In particular we have

(3) If S is flat over R then S’ is flat over R'.
(4) If R — 5" and R — R’ are flat then S is flat over R.

Proof. Proof of (1). If M is flat over R, then M ®g R’ is flat over R’ by Lemma
If W C S®g R is the multiplicative subset such that W—1(S ®g R') = S’
then M’ = W=1(M ®g R’). Hence M’ is flat over R’ as the localization of a flat
module, see Lemma part (5). This proves (1) and in particular, we see that
(3) holds.

Proof of (2). Suppose that M’ is flat over R’ and R — R’ is flat. By (3) applied to
the diagram reflected in the northwest diagonal we see that S — S’ is flat. Thus
S — S’ is faithfully flat by Lemma We are going to use the criterion of
Lemma to show that M is flat. Let I C R be an ideal. If I @ g M — M
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has a kernel, so does (I ®r M) ®s S’ - M ®g S’ = M'. Note that I g R' = IR’
as R — R’ is flat, and that
(I®rM)®sS ' =(I®rR)®p (M®sS')=IR @r M.

From flatness of M’ over R’ we conclude that this maps injectively into M’. This
concludes the proof of (2), and hence (4) is true as well. O

Here is yet another application of the local criterion of flatness.

Lemma 100.2. Consider a commutative diagram of local rings and local homo-
morphisms

S ——=9

]

R——FR

Let M be a finite S-module. Assume that

(1) the horizontal arrows are flat ring maps

(2) M is flat over R,

(3) mRR’ = Mg/,

(4) R’ and S’ are Noetherian.
Then M' = M ®g S’ is flat over R'.
Proof. Since mp C R and R — R’ is flat, we get mp ® g R = mgR = mp by
assumption (3). Observe that M’ is a finite S’-module which is flat over R by
Lemma Thus mg ® g M’ — M’ is injective. Then we get

mpR®r M =mr®r R ®r M' =mp Qp M’

Thus mp ® M’ — M’ is injective. This shows that Tor!® (kz/, M’) = 0 (Remark
75.9). Thus M’ is flat over R’ by Lemma O

101. Flatness criteria over Artinian rings

We discuss some flatness criteria for modules over Artinian rings. Note that an
Artinian local ring has a nilpotent maximal ideal so that the following two lemmas
apply to Artinian local rings.

Lemmal 101.1. Let (R, m) be a local ring with nilpotent mazximal ideal m. Let M
be a flat R-module. If A is a set and zo € M, o € A is a collection of elements of
M, then the following are equivalent:

(1) {Tataca forms a basis for the vector space M/mM over R/m, and
(2) {Zataca forms a basis for M over R.

Proof. The implication (2) = (1) is immediate. Assume (1). By Nakayama’s
Lemma [20.1] the elements z, generate M. Then one gets a short exact sequence

0—>K—>@ eAR—>M—>O

Tensoring with R/m and using Lemma(39.12|we obtain K/mK = 0. By Nakayama’s
Lemma 20.1] we conclude K = 0. O

Lemma 101.2. Let R be a local ring with nilpotent mazximal ideal. Let M be an
R-module. The following are equivalent

(1) M is flat over R,
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(2) M is a free R-module, and
(3) M is a projective R-module.

Proof. Since any projective module is flat (as a direct summand of a free module)
and every free module is projective, it suffices to prove that a flat module is free.
Let M be a flat module. Let A be a set and let z, € M, o € A be elements such
that T, € M/mM forms a basis over the residue field of R. By Lemma the
T, are a basis for M over R and we win. O

Lemma 101.3. Let R be a ring. Let I C R be an ideal. Let M be an R-module.
Let A be a set and let x,, € M, a € A be a collection of elements of M. Assume
(1) T is nilpotent,
(2) {ZTataca forms a basis for M/IM over R/I, and
(3) Torf(R/I,M) = 0.
Then M is free on {Zq}aca over R.

Proof. Let R, I, M, {z4}aca be as in the lemma and satisfy assumptions (1), (2),
and (3). By Nakayama’s Lemma the elements x, generate M over R. The
assumption Torf(R/I, M) = 0 implies that we have a short exact sequence

0—->I®rM—M— M/IM — 0.

Let > fazo = 0 be a relation in M. By choice of x,, we see that f, € I. Hence we
conclude that Y fo ® 24 = 0in I @z M. The map [ @g M — I/I? ®p/r M/IM
and the fact that {z,}aca forms a basis for M/IM implies that f, € I?! Hence
we conclude that there are no relations among the images of the x, in M/I?M. In
other words, we see that M/I?M is free with basis the images of the . Using the
map [ @g M — I/13 QR M/I?M we then conclude that f, € I3! And so on.
Since I"™ = 0 for some n by assumption (1) we win. O

Lemma 101.4. Let ¢ : R — R’ be a ring map. Let I C R be an ideal. Let M be
an R-module. Assume

(1) M/IM is flat over R/I, and

(2) R ®r M is flat over R'.
Set Iy = oY (p(I?)R'). Then M/I2M is flat over R/I5.

Proof. We may replace R, M, and R’ by R/Iy, M/I;M, and R'/o(I)?R’. Then
I? = 0 and ¢ is injective. By Lemma and the fact that I? = 0 it suffices to
prove that Torf(R/I, M) = K = Ker(I ® g M — M) is zero. Set M’ = M @p R’
and I’ = IR'. By assumption the map I’ ® gz M’ — M’ is injective. Hence K maps
to zero in
I'Qp M'=T'®r M =1 QR/I M/IM
Then I — I’ is an injective map of R/I-modules. Since M/IM is flat over R/I the
map
I®R/I M/IM — I QRr/1 M/IM

is injective. This implies that K is zero in I @ g M = I @,y M/IM as desired. [0

Lemma 101.5. Let o : R — R’ be a ring map. Let I C R be an ideal. Let M be
an R-module. Assume

(1) I is nilpotent,

(2) R — R’ is injective,
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(3) M/IM is flat over R/I, and
(4) R'®r M is flat over R'.
Then M is flat over R.

Proof. Define inductively I; = I and I,,41 = ¢ 1 (p(I,,)*R’) for n > 1. Note that
by Lemma we find that M /I, M is flat over R/I,, for each n > 1. It is clear
that (I,,) C o(I)?" R'. Since I is nilpotent we see that o(I,,) = 0 for some n. As
© is injective we conclude that I,, = 0 for some n and we win. ]

Here is the local Artinian version of the local criterion for flatness.

Lemmal 101.6. Let R be an Artinian local ring. Let M be an R-module. Let
I C R be a proper ideal. The following are equivalent

(1) M is flat over R, and

(2) M/IM is flat over R/I and Torf(R/I,M) = 0.

Proof. The implication (1) = (2) follows immediately from the definitions. As-
sume M/IM is flat over R/I and Tor{'(R/I, M) = 0. By Lemmathis implies
that M/IM is free over R/I. Pick a set A and elements z, € M such that the
images in M/IM form a basis. By Lemma we conclude that M is free and
in particular flat. ([

It turns out that flatness descends along injective homomorphism whose source is
an Artinian ring.

Lemmal 101.7. Let R — S be a ring map. Let M be an R-module. Assume
(1) R is Artinian
(2) R— S is injective, and
(3) M®RS is a flat S-module.

Then M is a flat R-module.

Proof. First proof: Let I C R be the Jacobson radical of R. Then I is nilpotent
and M/IM is flat over R/I as R/I is a product of fields, see Section Hence M

is flat by an application of Lemma

Second proof: By Lemma we may write R = [[ R; as a finite product of local
Artinian rings. This induces similar product decompositions for both R and S.
Hence we reduce to the case where R is local Artinian (details omitted).

Assume that R — S, M are as in the lemma satisfying (1), (2), and (3) and in
addition that R is local with maximal ideal m. Let A be a set and xz, € A be
elements such that T, forms a basis for M /mM over R/m. By Nakayama’s Lemma
20.1] we see that the elements x, generate M as an R-module. Set N = S ®r M
and I = mS. Then {1 ® Z,}aca is a family of elements of N which form a basis
for N/IN. Moreover, since N is flat over S we have Tory(S/I, N) = 0. Thus we
conclude from Lemma that N is free on {1 ® z4}aca. The injectivity of
R — S then guarantees that there cannot be a nontrivial relation among the z,,
with coefficients in R. (]

Please compare the lemma below to Lemma [99.15| (the case of Noetherian local

rings), Lemma [128.8| (the case of finitely presented algebras), and Lemma [128.10)
(the case of locally nilpotent ideals).
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Lemma 101.8 (Critére de platitude par fibres: Nilpotent case). Let

be a commutative diagram in the category of rings. Let I C R be a nilpotent ideal
and M an S’-module. Assume

(1) The module M/IM is a flat S/IS-module.

(2) The module M is a flat R-module.
Then M is a flat S-module and Sy is flat over R for every q C S such that M®gk(q)
18 NONZEro.

Proof. As M is flat over R tensoring with the short exact sequence 0 — I — R —
R/I — 0 gives a short exact sequence

0—-I®gM—M — M/IM — 0.

Note that I @ g M — IS ®g M is surjective. Combined with the above this means
both maps in

I@oprM = 1S®s M — M
are injective. Hence Tory (IS, M) = 0 (see Remark and we conclude that M
is a flat S-module by Lemma Fﬁ_rg} To finish we need to show that Sq is flat over
R for any prime q C S such that M ®g x(q) is nonzero. This follows from Lemma

[39.75] and B9.101 O

102. What makes a complex exact?

Some of this material can be found in the paper [BE73] by Buchsbaum and Eisen-
bud.

Situation 102.1. Here R is a ring, and we have a complex

. Po— wi . i L Pi-
0 — Rme £ Rre-t 2ol FHL g P4 grioy T, 2L, Rro
In other words we require @; 0 ;41 =0fori=1,...,e —1.

Lemma 102.2. Suppose R is a ring. Let

URERAAENG SR AN U I N
be a complex of finite free R-modules. Suppose that for some i some matriz coeffi-
cient of the map ; is invertible. Then the displayed complex is isomorphic to the
direct sum of a complex
oo — Rrivr B2, priy _ gri—l y grica—l , gri-e 903, pnies
and the complex ... -0 — R — R — 0 — ... where the map R — R is the identity
map.

Proof. The assumption means, after a change of basis of R™ and R™~! that the
first basis vector of R™ is mapped via ¢; to the first basis vector of R™-1. Let
e; denote the jth basis vector of R and f; the kth basis vector of R™-'. Write
vi(ej) = D> ajkfr. So arx = 0 unless k¥ = 1 and a;1 = 1. Change basis on R™
again by setting e;» = e; —ajie1 for j > 1. After this change of coordinates we have
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aj1 = 0 for j > 1. Note the image of R"#+! — R™ is contained in the subspace
spanned by e;, j > 1. Note also that R"-* — R™-2 has to annihilate f; since it is
in the image. These conditions and the shape of the matrix (a;x) for ¢; imply the
lemma. (]

In Situation [102.1] we say a complex of the form

0—>...—>O—>RL>R—>O—>...—>O

or of the form
0—... 40—~ R

is trivial. More precisely, we say 0 — R™ — R~ — ... — R™ is trivial if either
there exists an e > ¢ > 1 with n;, =n;_y = 1, ¢; =idg, and n; = 0 for j & {i,i—1}
or ng = 1 and n; = 0 for ¢ > 0. The lemma above clearly says that any finite
complex of finite free modules over a local ring is up to direct sums with trivial
complexes the same as a complex all of whose maps have all matrix coefficients in
the maximal ideal.

Lemma 102.3. In Situation . Suppose R is a local Noetherian ring with
mazimal ideal m. Assume m € Ass(R), in other words R has depth 0. Suppose that
0— R"% — R"-1!' — ... — R™ is exact at R™,...,R™. Then the complex is
isomorphic to a direct sum of trivial complezxes.

Proof. Pick z € R, © # 0, with mz = 0. Let i be the biggest index such that
n; > 0. If i = 0, then the statement is true. If i > 0 denote f; the first basis vector
of R™. Since xf; is not mapped to zero by exactness of the complex we deduce
that some matrix coefficient of the map R™ — R™-! is not in m. Lemma
then allows us to decrease n. + ...+ ny. Induction finishes the proof. O

Lemmal 102.4. In Situation[102.1l Let R be a Artinian local ring. Suppose that
0 — R™ — R™ ' — ... — R™ is exact at R",...,R™. Then the complex is
isomorphic to a direct sum of trivial complexes.

Proof. This is a special case of Lemma [102.3| because an Artinian local ring has
depth 0. O

Below we define the rank of a map of finite free modules. This is just one possible
definition of rank. It is just the definition that works in this section; there are
others that may be more convenient in other settings.

Definition 102.5. Let R be a ring. Suppose that ¢ : R™ — R™ is a map of finite
free modules.

(1) The rank of ¢ is the maximal r such that A"y : ATR™ — A" R™ is nonzero.
(2) We let I(y) C R be the ideal generated by the r x r minors of the matrix
of ¢, where r is the rank as defined above.

The rank of ¢ : R™ — R™ is 0 if and only if ¢ = 0 and in this case I(¢) = R.
Lemma 102.6. In Situation|102.1], suppose the complex is isomorphic to a direct

sum of trivial complexes. Then we have

(1) the maps @; have rank r; = n; —ngpq1 + ...+ (=1)""n,_y + (=1)"in,,
(2) foralli, 1 <i<e—1 we have rank(p;1+1) + rank(p;) = n;,
(3) each I(¢;) = R.
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Proof. We may assume the complex is the direct sum of trivial complexes. Then
for each ¢ we can split the standard basis elements of R™ into those that map to a
basis element of R™~! and those that are mapped to zero (and these are mapped
onto by basis elements of R™+! if i > 0). Using descending induction starting with
1 = e it is easy to prove that there are r;;1-basis elements of R™ which are mapped
to zero and r; which are mapped to basis elements of R™-1. From this the result

follows. (|
Lemmal 102.7. In Situation|102.1. Suppose R is a local ring with maximal ideal
m. Suppose that 0 — R"™ — R" ' — ... — R™ s exact at R",... , R™. Let

x € m be a nonzerodivisor. The compler 0 — (R/zR)" — ... — (R/xzR)™ is
exact at (R/zR)™, ..., (R/xR)"2.

Proof. Denote F, the complex with terms F; = R™ and differential given by ;.
Then we have a short exact sequence of complexes

0= Fy 5 Fy— F,JtFy — 0
Applying the snake lemma we get a long exact sequence
Hi(F)) 5 Hiy(F)) — Hi(Fo/aFy) — H;_1(Fo) = H;_1(F,)
The lemma follows. O

Lemma 102.8 (Acyclicity lemma). Let R be a local Noetherian ring. Let 0 —
M, — M._1 — ... = My be a complez of finite R-modules. Assume depth(M;) > i.
Let i be the largest index such that the complex is not exact at M;. If i > 0 then
Ker(M; — M;_1)/Im(M,11 — M;) has depth > 1.

Proof. Let H = Ker(M; — M;_1)/Im(M,;11 — M;) be the cohomology group
in question. We may break the complex into short exact sequences 0 — M, —
My - Keg =+ 0,0 = K; - M; — K;j_1 — 0, for i